Benchmarking of T cell receptor-epitope predictors with ePytope-TCR.
Cell Genom. 5:100946 (2025)
Understanding the recognition of disease-derived epitopes through T cell receptors (TCRs) has the potential to serve as a stepping stone for the development of efficient immunotherapies and vaccines. While a plethora of sequence-based prediction methods for TCR-epitope binding exists, their pre-trained models have not been comparatively evaluated. To alleviate this shortcoming, we integrated 21 TCR-epitope prediction models into the immune-prediction framework ePytope, offering interoperable interfaces with standard TCR repertoire data formats. We showcase the applicability of ePytope-TCR by evaluating the performance of these publicly available prediction models on two challenging datasets. While novel predictors successfully predicted binding to frequently observed epitopes, all methods failed for less frequently observed epitopes. Further, we detected a strong bias in the prediction scores between different epitope classes. We envision this benchmark to guide researchers in their choice of a predictor and to accelerate the method development by defining standardized evaluation settings.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
T Cell Immunology ; T Cell Receptor ; Tcr-epitope Prediction ; Adaptive Immunology ; Benchmarking ; Deep Learning ; Machine Learning
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
2666-979X
e-ISSN
2666-979X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 5,
Heft: 8,
Seiten: ,
Artikelnummer: 100946
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
50 Hampshire St, Floor 5, Cambridge, Ma 02139 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
G-503800-013
Förderungen
De.NBI Cloud within the German Network for Bioinformatics Infrastructure (de.NBI)
ELIXIR-DE (Forschungszentrum Julich)
Helmholtz Associ-ation under the joint research school "Munich School for Data Science-MUDS"
Joachim Herz Stiftung
BMBF grant
Copyright
Erfassungsdatum
2025-07-18