PuSH - Publikationsserver des Helmholtz Zentrums München

Schmid, K.T.* ; Symeonidi, A. ; Hlushchenko, D.* ; Richter, M.L.* ; Tijhuis, A.E.* ; Foijer, F.* ; Colomé-Tatché, M.

Benchmarking scRNA-seq copy number variation callers.

Nat. Commun. 16, 17:8777 (2025)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Copy number variations (CNVs), the gain or loss of genomic regions, are associated with disease, especially cancer. Single cell technologies offer new possibilities to capture within-sample heterogeneity of CNVs and identify subclones relevant for tumor progression and treatment outcome. Several computational tools have been developed to identify CNVs from scRNA-seq data. However, an independent benchmarking of them is lacking. Here, we evaluate six popular methods in their ability to correctly identify ground truth CNVs, euploid cells and subclonal structures in 21 scRNA-seq datasets. We discover dataset-specific factors influencing the performance, including dataset size, the number and type of CNVs in the sample and the choice of the reference dataset. Methods which include allelic information perform more robustly for large droplet-based datasets, but require higher runtime. Furthermore, the methods differ in their additional functionalities. We offer a benchmarking pipeline to identify the optimal method for new datasets, and improve methods' performance.
Impact Factor
Scopus SNIP
Altmetric
15.700
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Read Alignment; Framework; Aberrations; Oncogene; Toolkit
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 16, Heft: 1, Seiten: 17, Artikelnummer: 8777 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-554200-001
G-503800-001
Förderungen Deutsche Forschungsgemeinschaft (German Research Foundation)
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
Dutch Cancer Society
Scopus ID 105017754492
PubMed ID 41038850
Erfassungsdatum 2025-10-23