PuSH - Publikationsserver des Helmholtz Zentrums München

Klaproth-Andrade, D.* ; Scheller, I.F. ; Tsitsiridis, G.* ; Liokatis, S.* ; Mertes, C.* ; Smirnov, D. ; Prokisch, H. ; Yépez, V.A.* ; Gagneur, J.

PROTRIDER: Protein abundance outlier detection from mass spectrometry-based proteomics data with a conditional autoencoder.

Bioinformatics:btaf628 (2025)
Postprint Forschungsdaten DOI PMC
Creative Commons Lizenzvertrag
Open Access Gold möglich sobald Verlagsversion bei der ZB eingereicht worden ist.
MOTIVATION: Detection of gene regulatory aberrations enhances our ability to interpret the impact of inherited and acquired genetic variation for rare disease diagnostics and tumor characterization. While numerous methods for calling RNA expression outliers from RNA-sequencing data have been proposed, the establishment of protein expression outliers from mass spectrometry data is lacking. RESULTS: Here, we propose and assess various modeling approaches to call protein expression outliers across three datasets from rare disease diagnostics and oncology. We use as independent evidence the enrichment for outlier calls in matched RNA-seq samples and the enrichment for rare variants likely disrupting protein expression. We show that controlling for hidden confounders and technical covariates, while simultaneously modeling the occurrence of missing values, is largely beneficial and can be achieved using conditional autoencoders. Moreover, we find that the differences between experimental and fitted log-transformed intensities by such models exhibit heavy tails that are poorly captured with the Gaussian distribution and report stronger statistical calibration when instead using the Student's t-distribution. Our resulting method, PROTRIDER, outperformed baseline approaches based on raw log-intensities Z-scores, PCA, and isolation-based anomaly detection with Isolation forests. The application of PROTRIDER reveals significant enrichments of AlphaMissense pathogenic variants in protein expression outliers. Overall, PROTRIDER provides a method to confidently identify aberrantly expressed proteins applicable to rare disease diagnostics and cancer proteomics. AVAILABILITY: PROTRIDER is freely available at github.com/gagneurlab/PROTRIDER and also available on Zenodo under the DOI zenodo.15569781. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: , Heft: , Seiten: , Artikelnummer: btaf628 Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
Genetics and Epidemiology
PSP-Element(e) G-503800-001
G-503292-001
PubMed ID 41264729
Erfassungsdatum 2025-11-25