Deducing in vivo toxicity of combustion-derived nanoparticles from a cell-free oxidative potency assay and metabolic activation of organic compounds.
Environ. Health Perspect. 117, 54-60 (2009)
BACKGROUND: The inhalation of combustion-derived nanoparticles (CDNPs) is believed to cause an oxidative stress response, which in turn may lead to pulmonary or even systemic inflammation. OBJECTIVE AND METHODS: In this study we assessed whether the in vivo inflammatory response-which is generally referred to as particle toxicity-of mice to CDNPs can be predicted in vitro by a cell-free ascorbate test for the surface reactivity or, more precisely, oxidative potency (Ox(Pot),) of particles. RESULTS: For six types of CDNPs with widely varying particle diameter (10-50 nm), organic content (OC; 1-20%), and specific Brunauer, Emmett, and Teller (BET) surface area (43-800 m(2)/g), Ox(Pot) correlated strongly with the in vivo inflammatory response (pulmonary polymorphonuclear neutrophil influx 24 hr after intratracheal particle instillation). However, for CDNPs with high organic content, Ox(Pot) could not explain the observed inflammatory response, possibly due to shielding of the Ox(Pot) of the carbon core of CDNPs by an organic coating. On the other hand, a pathway-specific gene expression screen indicated that, for particles rich in polycyclic aromatic hydrocarbon (PAHs), cytochrome P450 1A1 (CYP1A1) enzyme-mediated biotransformation of bioavailable organics may generate oxidative stress and thus enhance the in vivo inflammatory response. CONCLUSION: The compensatory nature of both effects (shielding of carbon core and biotransformation of PAHs) results in a good correlation between inflammatory response and BET surface area for all CDNPs. Hence, the in vivo inflammatory response can either be predicted by BET surface area or by a simple quantitative model, based on in vitro Ox(Pot) and Cyp1a1 induction.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
air pollution; BET; biotransformation; carbonaceous particles; Cyp1a1; dose response; nanoparticles; nanotoxicity; organic compounds; oxidative stress; particle toxicity; soot particles; specific surface area; surface toxicity; ultrafine particles; diesel exhaust particles; airway epithelial-cells; ultrafine particles; surface-area; inflammatory response; aromatic-hydrocarbons; cytochrome-p450 1a1; gene-expression; stress; exposure; DIESEL EXHAUST PARTICLES; AIRWAY EPITHELIAL-CELLS; ULTRAFINE PARTICLES; SURFACE-AREA; INFLAMMATORY RESPONSE; AROMATIC-HYDROCARBONS; CYTOCHROME-P450 1A1; GENE-EXPRESSION; STRESS; EXPOSURE
Keywords plus
Language
english
Publication Year
2009
Prepublished in Year
HGF-reported in Year
2009
ISSN (print) / ISBN
0091-6765
e-ISSN
1552-9924
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 117,
Issue: 1,
Pages: 54-60
Article Number: ,
Supplement: ,
Series
Publisher
Research Triangle Park
Publishing Place
NC [u.a.]
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Lung Research
PSP Element(s)
G-505000-001
G-505000-002
G-505000-004
Grants
Copyright
Erfassungsdatum
2009-07-09