Open Access Green as soon as Postprint is submitted to ZB.
Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells.
Cell Stem Cell 11, 471-476 (2012)
Reprogramming of somatic cells into neurons provides a new approach toward cell-based therapy of neurodegenerative diseases. A major challenge for the translation of neuronal reprogramming into therapy is whether the adult human brain contains cell populations amenable to direct somatic cell conversion. Here we show that cells from the adult human cerebral cortex expressing pericyte hallmarks can be reprogrammed into neuronal cells by retrovirus-mediated coexpression of the transcription factors Sox2 and Mash1. These induced neuronal cells acquire the ability of repetitive action potential firing and serve as synaptic targets for other neurons, indicating their capability of integrating into neural networks. Genetic fate-mapping in mice expressing an inducible Cre recombinase under the tissue-nonspecific alkaline phosphatase promoter corroborated the pericytic origin of the reprogrammed cells. Our results raise the possibility of functional conversion of endogenous cells in the adult human brain to induced neuronal fates.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
HUMAN FIBROBLASTS; DOPAMINERGIC-NEURONS; FUNCTIONAL-NEURONS; POSTNATAL ASTROGLIA; DIRECT CONVERSION; MOUSE; GENERATION; ORIGIN
ISSN (print) / ISBN
1934-5909
e-ISSN
1875-9777
Journal
Cell Stem Cell
Quellenangaben
Volume: 11,
Issue: 4,
Pages: 471-476
Publisher
Cell Press
Publishing Place
Cambridge, Mass.
Non-patent literature
Publications
Reviewing status
Peer reviewed