PuSH - Publication Server of Helmholtz Zentrum München

Conde, J.* ; Ambrosone, A.* ; Sanz, V.* ; Hernandez, Y.* ; Marchesano, V.* ; Tian, F. ; Child, H.* ; Berry, C.C.* ; Ibarra, M.R.* ; Baptista, P.V.* ; Tortiglione, C.* ; de la Fuente, J.M.*

Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing.

ACS Nano 6, 8316-8324 (2012)
DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
Over the past decade, the capability of double-stranded RNAs to interfere with gene expression has driven new therapeutic approaches. Since small interfering RNA (siRNAs, 21 base pair double-stranded RNA) was shown to be able to elicit RNA interference (RNAi), efforts were directed toward the development of efficient delivery systems to preserve siRNA bioactivity throughout the delivery route, from the administration site to the target cell. Here we provide evidence of RNAi triggering, specifically silencing c-myc protooncogene, via the synthesis of a library of novel multifunctional gold nanoparticles (AuNPs). The efficiency of the AuNPs is demonstrated using a hierarchical approach including three biological systems of increasing complexity: in vitro cultured human cells, in vivo invertebrate (freshwater polyp, Hydra), and in vivo vertebrate (mouse) models. Our synthetic methodology involved fine-tuning of multiple structural and functional moieties. Selection of the most active functionalities was assisted step-by-step through functional testing that adopted this hierarchical strategy. Merging these chemical and biological approaches led to a safe, nonpathogenic, self-tracking, and universally valid nanocarrier that could be exploited for therapeutic RNAi.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
11.421
2.415
183
193
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Gold Nanoparticles ; Rna Interference ; Animal Models ; Biofunctionalization ; C-myc ; Cancer; INTERFERING RNA DELIVERY; SIRNA DELIVERY; QUANTUM DOTS; CELLS
Language english
Publication Year 2012
HGF-reported in Year 2012
ISSN (print) / ISBN 1936-0851
e-ISSN 1936-086X
Journal ACS Nano
Quellenangaben Volume: 6, Issue: 9, Pages: 8316-8324 Article Number: , Supplement: ,
Publisher American Chemical Society (ACS)
Reviewing status Peer reviewed
POF-Topic(s) 30202 - Environmental Health
Research field(s) Lung Research
PSP Element(s) G-505000-001
PubMed ID 22882598
Scopus ID 84866703563
Erfassungsdatum 2012-11-01