PuSH - Publication Server of Helmholtz Zentrum München

Geiser, M.* ; Casaulta, M.* ; Kupferschmid, B.* ; Schulz, S. ; Semmler-Behnke, M. ; Kreyling, W.G.

The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles.

Am. J. Respir. Cell Mol. Biol. 38, 371-376 (2008)
DOI
Open Access Green as soon as Postprint is submitted to ZB.
The role of macrophages in the clearance of particles with diameters less than 100 nm (ultrafine or nanoparticles) is not well established, although these particles deposit highly efficiently in peripheral lungs, where particle phagocytosis by macrophages is the primary clearance mechanism. To investigate the uptake of nanoparticles by lung phagocytes, we analyzed the distribution of titanium dioxide particles of 20 nm count median diameter in macrophages obtained by bronchoalveolar lavage at 1 hour and 24 hours after a 1-hour aerosol inhalation. Differential cell counts revealing greater than 96% macrophages and less than 1% neutrophils and lymphocytes excluded inflammatory cell responses. Employing energy-filtering transmission electron microscopy (EFTEM) for elemental microanalysis, we examined 1,594 macrophage profiles in the 1-hour group (n = 6) and 1,609 in the 24-hour group (n = 6). We found 4 particles in 3 macrophage profiles at 1 hour and 47 particles in 27 macrophage profiles at 24 hours. Model-based data analysis revealed an uptake of 0.06 to 0.12% ultrafine titanium-dioxide particles by lung-surface macrophages within 24 hours. Mean (SD) particle diameters were 31 (8) nm at 1 hour and 34 (10) nm at 24 hours. Particles were localized adjacent (within 13-83 nm) to the membrane in vesicles with mean (SD) diameters of 592 (375) nm at 1 hour and 414 (309) nm at 24 hours, containing other material like surfactant. Additional screening of macrophage profiles by conventional TEM revealed no evidence for agglomerated nanoparticles. These results give evidence for a sporadic and rather unspecific uptake of TiO(2)-nanoparticles by lung-surface macrophages within 24 hours after their deposition, and hence for an insufficient role of the key clearance mechanism in peripheral lungs.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.608
1.490
124
181
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords clearance; electron filtering transmission electron microscopy; lungs; macrophages; nanoparticles
Language english
Publication Year 2008
HGF-reported in Year 2008
ISSN (print) / ISBN 1044-1549
e-ISSN 1535-4989
Quellenangaben Volume: 38, Issue: 3, Pages: 371-376 Article Number: , Supplement: ,
Publisher American Thoracic Society
Reviewing status Peer reviewed
POF-Topic(s) 30202 - Environmental Health
Research field(s) Lung Research
PSP Element(s) G-505000-004
Scopus ID 40649129237
Erfassungsdatum 2008-08-28