Open Access Green as soon as Postprint is submitted to ZB.
On a Convolution Property Characterizing the Laguerre Functions.
Monatsh. Math. 107, 281-285 (1989)
Consider the Laguerre functionslpn(t)=(−1)n2p−−√Ln(2pt)e−pt (with parameterp>0), where theL n are the Laguerre polynomials with parameter α=0.{l n p (t)} n=0 ∞ forms a complete orthonormal system inL 2 ([0, ∞)). A well known and often used property of the Laguerre functions is the convolution property:2p−−√lpi∗lpj=lpi+j+lpi+j+1 for alli,j≥0. It is the objectiveof this note that the system of Laguerre functions is the only complete and orthonormal system ofL 2 ([0, ∞)) satisfying the convolution property.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.000
Annotations
Special Publikation
Hide on homepage
Publication type
Article: Journal article
Document type
Scientific Article
Language
english
Publication Year
1989
HGF-reported in Year
0
ISSN (print) / ISBN
0026-9255
Journal
Monatshefte für Mathematik
Quellenangaben
Volume: 107,
Pages: 281-285
Publisher
Universität Wien
Reviewing status
Peer reviewed
Institute(s)
Department for Medical Information Systems (MEDIS)
Institute of Biological and Medical Imaging (IBMI)
Institute of Biological and Medical Imaging (IBMI)
POF-Topic(s)
Research field(s)
Enabling and Novel Technologies
Enabling and Novel Technologies
PSP Element(s)
FE 75557
Erfassungsdatum
1989-12-31