PuSH - Publication Server of Helmholtz Zentrum München

Dilly, O.* ; Blume, H.-P.* ; Sehy, U. ; Jimenez, M.A. ; Munch, J.-C.

Variation of stabilised, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices.

Chemosphere 52, 557-569 (2003)
DOI
Open Access Gold as soon as Publ. Version/Full Text is submitted to ZB.
Land use and agricultural practices modify both the amounts and properties of C and N in soil organic matter. In order to evaluate land use and management-dependent modifications of stable and labile C and N soil pools, (i) organic C and total N content, (ii) microbial (Cmic) and N (Nmic) content and (iii) C and N mineralisation rates, termed biologically active C and N, were estimated in arable, grassland and forest soils from northern and southern Germany. The C/N-ratios were calculated for the three levels (i)–(iii) and linked to the eco-physiological quotients of biotic-fixed C and N (Cmic/Corg, Nmic/Nt) and biomass-specific C and N mineralisation rate (qCO2, qNmin). Correlations could mainly be determined between organic C, total N, Cmic, Nmic and C mineralisation for the broader data set of the land use systems. Generally, the mineralisation activity rate at 22 °C was highly variable and ranged between 0.11 and 17.67 μg CO2–C g−1 soil h−1 and −0.12 and 3.81 μg (δNH4+ + δNO3)–N g−1 soil h−1. Negative N data may be derived from both N immobilisation and N volatilisation during the experiments. The ratio between C and N mineralisation rate differed significantly between the soils ranging from 5 to 37, and was not correlated to the soil C/N ratio and Cmic/Nmic ratio. The C/N ratio in the ‘biologically active’ pool was significantly smaller in soils under conventional farming than those under organic farming systems. In a beech forest, it increased from the L, Of to the Ah horizon. The biologically active C and N pools refer to the current microbial eco-physiology and are related to the need for being C and N use efficient as indicated by metabolic qCO2 and qNmin quotients.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
1.461
0.000
48
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Agricultural management; Carbon; C/N ratio; Land use; Mineralisation; Nitrogen
Language english
Publication Year 2003
HGF-reported in Year 0
ISSN (print) / ISBN 0045-6535
e-ISSN 1879-1298
Journal Chemosphere
Quellenangaben Volume: 52, Issue: 3, Pages: 557-569 Article Number: , Supplement: ,
Publisher Elsevier
Publishing Place Kidlington, Oxford
Reviewing status Peer reviewed
POF-Topic(s) 20402 - Sustainable Plant Production
Research field(s) Environmental Sciences
PSP Element(s) G-504400-001
Erfassungsdatum 2006-04-05