Open Access Green as soon as Postprint is submitted to ZB.
		
    Interactive effects of elevated ozone and carbon dioxide on growth and yield of leaf rust-infected versus non-infected wheat.
        
        Environ. Pollut. 108, 357-363 (2000)
    
    
    
	    Spring wheat (Triticum aestivum L. cv. Turbo) was grown from seedling emergence to maturity (129 days) in chambers simulating the physical climate and ozone pollution of a field site in Northern Germany from 1 April to 31 July with a mean 1-h daily maximum of 61.5-62.4 nl l(-1) ozone compared to a constant low level of 21.5-22.8 nl l(-1) ozone. The two ozone levels were combined with either a current (374.1-380.2 microl l(-1)) or enriched (610.6-615.0 microl l(-1)) CO(2) atmosphere. Additionally, a leaf rust epidemic (Puccinia recondita f. sp. tritici) was induced at tillering stage by repeated re-inoculations with the inoculum formed on the plants. Leaf rust disease was strongly inhibited by ozone, but largely unaffected by elevated CO(2). Ozone damage on leaves was strongly affected by CO(2) and infection. On infected plants, ozone lesions appeared 2-4 weeks earlier and were up to fourfold more severe compared to non-infected plants. Elevated CO(2) did not delay the onset of ozone lesions but it significantly reduced the severity of leaf damage. It also enhanced the photosynthetic rate of flag leaves and increased the water use efficiency, biomass formation and grain yield. The relative increases in growth and yield induced by CO(2) were much larger on ozone-stressed than on non-stressed plants. Both ozone and fungal infection reduced biomass formation, number of grains per plant, thousand grain weight and grain yield; however, adverse effects of leaf rust infection were more severe. Elevated CO(2) largely equalized the negative effects of ozone on the photosynthetic rate, growth and yield parameters, but was not capable of compensating for the detrimental effects of fungal infection. The data imply that the impact of ozone in the field cannot be estimated without considering the predisposing effects deriving from fungal infections and the compensating effects deriving from elevated CO(2).
	
	
      Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Times Cited
Scopus
Cited By
		Cited By
Altmetric
		
	    0.000
		0.000
		30
		70
		
	    Annotations
	    
		
		     
		    
		
	    
	
		
	
	    Special Publikation
	    
		
		     
		
	    
	
	
	
	    Hide on homepage
	    
		
		     
		
	    
	
	
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
     
    
    
        Keywords
        ozone; carbon dioxide; leaf rust; wheat; Puccinia recondita; Triticum aestivum; TRITICUM-AESTIVUM L; CO2 CONCENTRATION; WINTER-WHEAT; STOMATAL CONDUCTANCE; WATER-USE; PHOTOSYNTHESIS; LEAVES; TEMPERATURE; AIR
    
 
     
    
    
        Language
        english
    
 
    
        Publication Year
        2000
    
 
     
    
        HGF-reported in Year
        0
    
 
    
    
        ISSN (print) / ISBN
        0269-7491
    
 
    
        e-ISSN
        1873-6424
    
 
    
     
     
	     
	 
	 
    
        Journal
        Environmental Pollution
    
 
	
    
        Quellenangaben
        
	    Volume: 108,  
	    Issue: 3,  
	    Pages: 357-363 
	    
	    
	
    
 
    
         
        
            Publisher
            Elsevier
        
 
         
	
         
         
         
         
         
	
         
         
         
    
         
         
         
         
         
         
         
    
        Reviewing status
        Peer reviewed
    
 
    
        Institute(s)
        Abteilung Expositionskammern
    
 
     
     
     
     
     	
    
        PubMed ID
        15092930
    
    
    
        WOS ID
        WOS:000086048100006
    
    
        Scopus ID
        0033627374
    
    
        Erfassungsdatum
        2000-12-31