PuSH - Publication Server of Helmholtz Zentrum München

Czaja, W.* ; Ehler, M.

Schroedinger eigenmaps for the analysis of biomedical data.

IEEE Trans. Pattern Anal. Mach. Intell. 35, 1274-1280 (2013)
DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
We introduce Schroedinger Eigenmaps (SE), a new semi-supervised manifold learning and recovery technique. This method is based on an implementation of graph Schroedinger operators with appropriately constructed barrier potentials as carriers of labeled information. We use our approach for the analysis of standard biomedical datasets and new multispectral retinal images.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.795
9.183
49
52
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Schroedinger Eigenmaps ; Laplacian Eigenmaps ; Schroedinger Operator On A Graph ; Barrier Potential ; Dimension Reduction ; Manifold Learning; Nonlinear Dimensionality Reduction ; Macular Degeneration ; Geometric Framework ; Bruchs Membrane ; Eye Disease ; Drusen ; Regularization ; Segmentation ; Diagnosis ; Tool
Language english
Publication Year 2013
HGF-reported in Year 2013
ISSN (print) / ISBN 0162-8828
e-ISSN 1939-3539
Quellenangaben Volume: 35, Issue: 5, Pages: 1274-1280 Article Number: , Supplement: ,
Publisher Institute of Electrical and Electronics Engineers (IEEE)
Reviewing status Peer reviewed
POF-Topic(s) 30505 - New Technologies for Biomedical Discoveries
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-551500-001
PubMed ID 23520264
Scopus ID 84875418338
Erfassungsdatum 2013-04-11