Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice.
Hepatology 48, 607-616 (2008)
The Notch pathway is an evolutionary conserved, intercellular signaling pathway that plays an important role in cell fate specification and the embryonic development of many organs, including the liver. In humans, mutations in the Notch receptor ligand Jagged1 gene result in defective intrahepatic bile duct (IHBD) development in Alagille syndrome. Developmental abnormalities of IHBD in mice doubly heterozygous for Jagged1 and Notch2 mutations propose that interactions of Jagged1 and its receptor Notch2 are crucial for normal IHBD development. Because different cell types in the liver are involved in IHBD development and morphogenesis, the cell-specific role of Notch signaling is not entirely understood. We investigated the effect of combined or single targeted disruption of Notch1 and Notch2 specifically in hepatoblasts and hepatoblast-derived lineage cells on liver development using AlbCre transgenic mice. Hepatocyte differentiation and homeostasis were not impaired in mice after combined deletion of Notch1 and Notch2 (N1N2(F/F)AlbCre). However, we detected irregular ductal plate structures in N1N2(F/F)AlbCre newborns, and further postnatal development of IHBD was severely impaired characterized by disorganized ductular structures accompanied by portal inflammation, portal fibrosis, and foci of hepatocyte feathery degeneration in adulthood. Further characterization of mutant mice with single deletion of Notch1 (N1(F/F)AlbCre) or Notch2 (N2(F/F)AlbCre) showed that Notch2 but not Notch1 is indispensable for normal perinatal and postnatal IHBD development. Further reduction of Notch2 gene dosage in Notch2 conditional/mutant (N2(F/LacZ)AlbCre) animals further enhanced IHBD abnormalities and concomitant liver pathology. CONCLUSION: Notch2 is required for proper IHBD development and morphogenesis.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Keywords plus
Language
Publication Year
2008
Prepublished in Year
HGF-reported in Year
2008
ISSN (print) / ISBN
0270-9139
e-ISSN
1527-3350
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 48,
Issue: 2,
Pages: 607-616
Article Number: ,
Supplement: ,
Series
Publisher
Wiley
Publishing Place
Hoboken, NJ
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30203 - Molecular Targets and Therapies
Research field(s)
Immune Response and Infection
PSP Element(s)
G-501500-003
Grants
Copyright
Erfassungsdatum
2008-08-28