A vine-copula based adaptive MCMC sampler for efficient inference of dynamical systems.
Bayesian Anal. 8, 1-22 (2013)
Statistical inference in high dimensional dynamical systems is often hindered by the unknown dependency structure of model parameters. In particu- lar, the inference of parameterized differential equations (DEs) via Markov chain Monte Carlo (MCMC) samplers often suffers from high proposal rejection rates and is exacerbated by strong autocorrelation structures within the Markov chains leading to poor mixing properties. In this paper, we develop a novel vine-copula based adaptive MCMC approach for efficient parameter inference in dynamical systems with strong parameter interdependence. We exploit the concept of a vine-copula decomposition of distribution densities in order to generate problem- specific proposals for a hybrid independence/random walk Metropolis-Hastings (MH) sampler. The key advantage of this approach is that the corresponding MH proposals generate independent samples from the posterior distribution more effi- ciently than common competitors. All copula densities can be updated during the sampling procedure for fine-tuning. The performance of our method is assessed on two small-scale examples and finally evaluated on a delay DE model for the JAK2-STAT5 signaling pathway fitted to time-resolved western blot data. We compare our copula-based approach to an independence sampler, a second-order moment-based random walk MH algorithm, and an adaptive MH sampler.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Parameter inference; Metropolis-Hastings algorithm; Independence sampling; Adaptive MCMC; Vine; Copula; Dependent Random-variables ; Metropolis Algorithm ; Markov-chains ; Constructions ; Model ; Decomposition
Keywords plus
Language
english
Publication Year
2013
Prepublished in Year
HGF-reported in Year
2013
ISSN (print) / ISBN
1931-6690
e-ISSN
1931-6690
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 8,
Issue: 1,
Pages: 1-22
Article Number: ,
Supplement: ,
Series
Publisher
Carnegie Mellon Univ.
Publishing Place
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30505 - New Technologies for Biomedical Discoveries
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-503700-004
Grants
Copyright
Erfassungsdatum
2013-05-07