PuSH - Publication Server of Helmholtz Zentrum München

Taruttis, A. ; Wildgruber, M.* ; Kosanke, K.* ; Bézière, N. ; Licha, K.* ; Haag, R.* ; Aichler, M. ; Walch, A.K. ; Rummeny, E.* ; Ntziachristos, V.

Multispectral optoacoustic tomography of myocardial infarction.

Photoacoustics 1, 3-8 (2013)
Publ. Version/Full Text Volltext DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Objectives To investigate the feasibility of a high resolution optical imaging strategy for myocardial infarction. Background Near-infrared approaches to imaging cardiovascular disease enable visualization of disease-associated biological processes in vivo. However, even at the scale of small animals, the strong scattering of light prevents high resolution imaging after the first 1–2 mm of tissue, leading to degraded signal localization. Methods Multispectral optoacoustic tomography (MSOT) was used to non-invasively image myocardial infarction (MI) in a murine model of coronary artery ligation at resolutions not possible with current deep-tissue optical imaging methods. Post-MI imaging was based on resolving the spectral absorption signature of a dendritic polyglycerol sulfate-based (dPGS) near-infrared imaging agent targeted to P- and L-selectin. Results In vivo imaging succeeded in detection of the agent in the injured myocardium after intravenous injection. The high anatomic resolution (<200 μm) achieved by the described method allowed signals originating in the infarcted heart to be distinguished from uptake in adjacent regions. Histological analysis found dPGS signal in infarcted areas, originating from leukocytes and endothelial cells. Conclusions MSOT imaging of myocardial infarction provides non-invasive visualization of optical contrast with a high spatial resolution that is not degraded by the scattering of light.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Myocardial infarction; Optical imaging; Optoacoustic imaging
ISSN (print) / ISBN 2213-5979
Journal Photoacoustics
Quellenangaben Volume: 1, Issue: 1, Pages: 3-8 Article Number: , Supplement: ,
Publisher Elsevier
Non-patent literature Publications
Reviewing status Peer reviewed