Giesert, F. ; Hofmann, A. ; Bürger, A. ; Zerle, J. ; Kloos, K. ; Hafen, U. ; Ernst, L. ; Zhang, J. ; Vogt Weisenhorn, D.M. ; Wurst, W.
Expression analysis of lrrk1, lrrk2 and lrrk2 splice variants in mice.
PLoS ONE 8:e63778 (2013)
Missense mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are linked to autosomal dominant forms of Parkinson's disease (PD). In order to get insights into the physiological role of Lrrk2, we examined the distribution of Lrrk2 mRNA and different splice variants in the developing murine embryo and the adult brain of Mus musculus. To analyse if the Lrrk2-paralog, Lrrk1, may have redundant functions in PD-development, we also compared Lrrk1 and Lrrk2 expression in the same tissues. Using radioactive in situ hybridization, we found ubiquitous expression of both genes at low level from embryonic stage E9.5 onward, which progressively increased up until birth. The developing central nervous system (CNS) displayed no prominent Lrrk2 mRNA signals at these time-points. However, in the entire postnatal brain Lrrk2 became detectable, showing strongest level in the striatum and the cortex of adult mice; Lrrk1 was only detectable in the mitral cell layer of the olfactory bulb. Thus, due to the non-overlapping expression patterns, a redundant function of Lrrk2 and Lrrk1 in the pathogenesis of PD seems to be unlikely. Quantification of Lrrk2 mRNA and protein level in several brain regions by real-time PCR and Western blot verified the striatum and cortex as hotspots of postnatal Lrrk2 expression. Strong expression of Lrrk2 is mainly found in neurons, specifically in the dopamine receptor 1 (DRD1a) and 2 (DRD2)-positive subpopulations of the striatal medium spiny neurons. Finally, we identified 2 new splice-variants of Lrrk2 in RNA-samples from various adult brain regions and organs: a variant with a skipped exon 5 and a truncated variant terminating in an alternative exon 42a. In order to identify the origin of these two splice variants, we also analysed primary neural cultures independently and found cell-specific expression patterns for these variants in microglia and astrocytes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Familial Parkinsons-disease ; Pathological Human Brain ; Protein-kinase Activity ; Rich Repeat Kinase-2 ; Lewy Body Disease ; Mouse-brain ; Gtp-binding ; Gene Lrrk2 ; Cell-death ; 2 Parts
Keywords plus
Language
english
Publication Year
2013
Prepublished in Year
HGF-reported in Year
2013
ISSN (print) / ISBN
1932-6203
e-ISSN
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 8,
Issue: 5,
Pages: ,
Article Number: e63778
Supplement: ,
Series
Publisher
Public Library of Science (PLoS)
Publishing Place
Lawrence, Kan.
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30204 - Cell Programming and Repair
Research field(s)
Genetics and Epidemiology
PSP Element(s)
G-500500-001
G-500500-003
Grants
Copyright
Erfassungsdatum
2013-05-24