PuSH - Publication Server of Helmholtz Zentrum München

Milan, D.J.* ; Kim, AM.* ; Winterfield, J.R.* ; Jones, I.L.* ; Pfeufer, A. ; Sanna, S.* ; Arking, D.E.* ; Amsterdam, A.H.* ; Sabeh, K.M.* ; Mably, J.D.* ; Rosenbaum, D.S.* ; Peterson, R.T.* ; Chakravarti, A.* ; Kääb, S.* ; Roden, D.M.* ; MacRae, C.A.*

Drug-sensitized zebrafish screen identifies multiple genes, including GINS3, as regulators of myocardial repolarization.

Circulation 120, 553-559 (2009)
DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
Background-Cardiac repolarization, the process by which cardiomyocytes return to their resting potential after each beat, is a highly regulated process that is critical for heart rhythm stability. Perturbations of cardiac repolarization increase the risk for life-threatening arrhythmias and sudden cardiac death. Although genetic studies of familial long-QT syndromes have uncovered several key genes in cardiac repolarization, the major heritable contribution to this trait remains unexplained. Identification of additional genes may lead to a better understanding of the underlying biology, aid in identification of patients at risk for sudden death, and potentially enable new treatments for susceptible individuals. Methods and Results-We extended and refined a zebrafish model of cardiac repolarization by using fluorescent reporters of transmembrane potential. We then conducted a drug-sensitized genetic screen in zebrafish, identifying 15 genes, including GINS3, that affect cardiac repolarization. Testing these genes for human relevance in 2 concurrently completed genome-wide association studies revealed that the human GINS3 ortholog is located in the 16q21 locus, which is strongly associated with QT interval. Conclusions-This sensitized zebrafish screen identified 15 novel myocardial repolarization genes. Among these genes is GINS3, the human ortholog of which is a major locus in 2 concurrent human genome-wide association studies of QT interval. These results reveal a novel network of genes that regulate cardiac repolarization.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords electrophysiology; genes; ion channels; myocardial repolarization; long-qt syndrome; modulates cardiac repolarization; interval duration; common variants; atrioventricular-block; molecular physiology; concentric growth; heart; sodium; risk
ISSN (print) / ISBN 0009-7322
e-ISSN 1524-4539
Journal Circulation
Quellenangaben Volume: 120, Issue: 7, Pages: 553-559 Article Number: , Supplement: ,
Publisher Lippincott Williams & Wilkins
Non-patent literature Publications
Reviewing status Peer reviewed