Open Access Green as soon as Postprint is submitted to ZB.
SEMA3A signaling controls layer-specific interneuron branching in the cerebellum.
Curr. Biol. 23, 850-861 (2013)
Background: GABAergic interneurons regulate the balance and dynamics of neural circuits, in part, by elaborating their strategically placed axon branches that innervate specific cellular and subcellular targets. However, the molecular mechanisms that regulate target-directed GABAergic axon branching are not well understood. Results: Here we show that the secreted axon guidance molecule, SEMA3A, expressed locally by Purkinje cells, regulates cerebellar basket cell axon branching through its cognate receptor Neuropilin-1 (NRP1). SEMA3A was specifically localized and enriched in the Purkinje cell layer (PCL). In sema3A(-/-) and nrp1(sema-/sema-) mice lacking SEMA3A-binding domains, basket axon branching in PCL was reduced. We demonstrate that SEMA3A-induced axon branching was dependent on local recruitment of soluble guanylyl cyclase (sGC) to the plasma membrane of basket cells, and sGC subcellular trafficking was regulated by the Src kinase FYN. In 6m-deficient mice, basket axon terminal branching was reduced in PCL, but not in the molecular layer. Conclusions: These results demonstrate a critical role of local SEMA3A signaling in layer-specific axonal branching, which contributes to target innervation.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Axon Initial Segment ; Soluble Guanylyl Cyclase ; Tyrosine Phosphorylation ; Extracellular-matrix ; Semaphorin-iii ; Growth Cones ; Nitric-oxide ; Synaptic Specificity ; Cortical-neurons ; Purkinje-cells
ISSN (print) / ISBN
0960-9822
e-ISSN
1879-0445
Journal
Current Biology
Quellenangaben
Volume: 23,
Issue: 10,
Pages: 850-861
Publisher
Elsevier
Non-patent literature
Publications
Reviewing status
Peer reviewed
Institute(s)
Institute of Developmental Genetics (IDG)