PuSH - Publication Server of Helmholtz Zentrum München

Mußmann, M.* ; Ribot, M.* ; von Schiller, D.* ; Merbt, S.N.* ; Augspurger, C.* ; Karwautz, C. ; Winkel, M.* ; Battin, T.J.* ; Marti, E.* ; Daims, H.*

Colonization of freshwater biofilms by nitrifying bacteria from activated sludge.

FEMS Microbiol. Ecol. 85, 104-115 (2013)
Publ. Version/Full Text Volltext DOI PMC
Open Access Gold
Effluents from wastewater treatment plants (WWTPs) containing micro-organisms and residual nitrogen can stimulate nitrification in freshwater streams. We hypothesized that different ammonia-oxidizing (AOB) and nitrite-oxidizing (NOB) bacteria present in WWTP effluents differ in their potential to colonize biofilms in the receiving streams. In an experimental approach, we monitored biofilm colonization by nitrifiers in ammonium- or nitrite-fed microcosm flumes after inoculation with activated sludge. In a field study, we compared the nitrifier communities in a full-scale WWTP and in epilithic biofilms downstream of the WWTP outlet. Despite substantially different ammonia concentrations in the microcosms and the stream, the same nitrifiers were detected by fluorescence in situ hybridization in all biofilms. Of the diverse nitrifiers present in the WWTPs, only AOB of the Nitrosomonas oligotropha/ureae lineage and NOB of Nitrospira sublineage I colonized the natural biofilms. Analysis of the amoA gene encoding the alpha subunit of ammonia monooxygenase of AOB revealed seven identical amoA sequence types. Six of these affiliated with the N.oligotropha/ureae lineage and were shared between the WWTP and the stream biofilms, but the other shared sequence type grouped with the N.europaea/eutropha and N.communis lineage. Measured nitrification activities were high in the microcosms and the stream. Our results show that nitrifiers from WWTPs can colonize freshwater biofilms and confirm that WWTP-affected streams are hot spots of nitrification.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.563
1.180
29
35
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Nitrification ; Ammonia Oxidizers ; Nitrite Oxidizers ; Wastewater Treatment Plants ; Freshwater Biofilm ; Colonization; Ammonia-oxidizing Bacteria ; Lower Seine River ; Targeted Oligonucleotide Probes ; In-situ Hybridization ; 16s Ribosomal-rna ; Waste-water ; Treatment-plant ; Community Structure ; Microbial-populations ; Sequence-analysis
Language english
Publication Year 2013
HGF-reported in Year 2013
ISSN (print) / ISBN 0168-6496
e-ISSN 1574-6941
Quellenangaben Volume: 85, Issue: 1, Pages: 104-115 Article Number: , Supplement: ,
Publisher Wiley
Publishing Place Oxford
Reviewing status Peer reviewed
POF-Topic(s) 20403 - Sustainable Water Management
Research field(s) Environmental Sciences
PSP Element(s) G-504300-005
PubMed ID 23461285
Scopus ID 84879414451
Erfassungsdatum 2013-07-18