PuSH - Publication Server of Helmholtz Zentrum München

Mußmann, M.* ; Ribot, M.* ; von Schiller, D.* ; Merbt, S.N.* ; Augspurger, C.* ; Karwautz, C. ; Winkel, M.* ; Battin, T.J.* ; Marti, E.* ; Daims, H.*

Colonization of freshwater biofilms by nitrifying bacteria from activated sludge.

FEMS Microbiol. Ecol. 85, 104-115 (2013)
DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
Effluents from wastewater treatment plants (WWTPs) containing micro-organisms and residual nitrogen can stimulate nitrification in freshwater streams. We hypothesized that different ammonia-oxidizing (AOB) and nitrite-oxidizing (NOB) bacteria present in WWTP effluents differ in their potential to colonize biofilms in the receiving streams. In an experimental approach, we monitored biofilm colonization by nitrifiers in ammonium- or nitrite-fed microcosm flumes after inoculation with activated sludge. In a field study, we compared the nitrifier communities in a full-scale WWTP and in epilithic biofilms downstream of the WWTP outlet. Despite substantially different ammonia concentrations in the microcosms and the stream, the same nitrifiers were detected by fluorescence in situ hybridization in all biofilms. Of the diverse nitrifiers present in the WWTPs, only AOB of the Nitrosomonas oligotropha/ureae lineage and NOB of Nitrospira sublineage I colonized the natural biofilms. Analysis of the amoA gene encoding the alpha subunit of ammonia monooxygenase of AOB revealed seven identical amoA sequence types. Six of these affiliated with the N.oligotropha/ureae lineage and were shared between the WWTP and the stream biofilms, but the other shared sequence type grouped with the N.europaea/eutropha and N.communis lineage. Measured nitrification activities were high in the microcosms and the stream. Our results show that nitrifiers from WWTPs can colonize freshwater biofilms and confirm that WWTP-affected streams are hot spots of nitrification.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Nitrification ; Ammonia Oxidizers ; Nitrite Oxidizers ; Wastewater Treatment Plants ; Freshwater Biofilm ; Colonization; Ammonia-oxidizing Bacteria ; Lower Seine River ; Targeted Oligonucleotide Probes ; In-situ Hybridization ; 16s Ribosomal-rna ; Waste-water ; Treatment-plant ; Community Structure ; Microbial-populations ; Sequence-analysis
ISSN (print) / ISBN 0168-6496
e-ISSN 1574-6941
Quellenangaben Volume: 85, Issue: 1, Pages: 104-115 Article Number: , Supplement: ,
Publisher Wiley
Publishing Place Oxford
Non-patent literature Publications
Reviewing status Peer reviewed