PuSH - Publication Server of Helmholtz Zentrum München

Elsner, M. ; Chartrand, M.* ; van Stone, N.* ; Lacrampe-Couloume, G.* ; Sherwood Lollar, B.*

Identifying Abiotic Chlorinated Ethene Degradation: Characteristic Isotope Patterns in Reaction Products with Nanoscale Zero-Valent Iron.

Environ. Sci. Technol. 42, 5963-5970 (2008)
DOI
Open Access Green as soon as Postprint is submitted to ZB.
Carbon isotope fractionation is of great interest in assessing chlorinated ethene transformation by nanoscale zero-valent iron at contaminated sites, particularly in distinguishing the effectiveness of an implemented abiotic degradation remediation scheme from intrinsic biotic degradation. Transformation of trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), and vinyl chloride (VC) with two types of nanoscale iron materials showed different reactivity trends, but relatively consistent carbon isotope enrichment factors (?) of -19.4‰ 1.8‰ (VC), -21.7‰ 1.8‰ (cis-DCE), and -23.5‰ 2.8‰ (TCE) with one type of iron (FeBH), and from -20.9‰ 1.1‰ to -26.5‰ 1.5‰ (TCE) with the other (FeH2). Products of the dichloroelimination pathway (ethene, ethane, and acetylene) were consistently 10‰ more isotopically depleted than those of the hydrogenolysis pathway (cis-DCE from TCE, VC from cis-DCE), displaying a characteristic pattern that may serve as an indicator of abiotic dehalogenation reactions and as a diagnostic parameter for differentiating the effects of abiotic versus biotic degradation. In contrast, the product-related enrichment factors of each respective pathway varied significantly in different experiments. Because such variation would not be expected for independent pathways with constant kinetic isotope effects, our data give preliminary evidence that the two pathways may share an irreversible first reaction step with subsequent isotopically sensitive branching.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.363
2.510
54
78
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2008
HGF-reported in Year 2008
ISSN (print) / ISBN 0013-936X
e-ISSN 1520-5851
Quellenangaben Volume: 42, Issue: 16, Pages: 5963-5970 Article Number: , Supplement: ,
Publisher ACS
Publishing Place Washington, DC
Reviewing status Peer reviewed
PSP Element(s) G-550700-001
Scopus ID 49749108582
Erfassungsdatum 2008-09-15