Open Access Green as soon as Postprint is submitted to ZB.
Reductive dechlorination of TCE by chemical model systems in comparison to dehalogenating bacteria: Insights from dual element isotope analysis (13C/12C, 37Cl/35Cl).
Environ. Sci. Technol. 47, 6855-6863 (2013)
Chloroethenes like trichloroethene (TCE) are prevalent environmental contaminants, which may be degraded through reductive dechlorination. Chemical models such as cobalamine (vitamin B12) and its simplified analogue cobaloxime have served to mimic microbial reductive dechlorination. To test whether in vitro and in vivo mechanisms agree, we combined carbon and chlorine isotope measurements of TCE. Degradation-associated enrichment factors εcarbon and εchlorine (i.e., molecular-average isotope effects) were -12.2‰ ± 0.5‰ and -3.6‰ ± 0.1‰ with Geobacter lovleyi strain SZ; -9.1‰ ± 0.6‰ and -2.7‰ ± 0.6‰ with Desulfitobacterium hafniense Y51; -16.1‰ ± 0.9‰ and -4.0‰ ± 0.2‰ with the enzymatic cofactor cobalamin; -21.3‰ ± 0.5‰ and -3.5‰ ± 0.1‰ with cobaloxime. Dual element isotope slopes m = Δδ(13)C/ Δδ(37)Cl ≈ εcarbon/εchlorine of TCE showed strong agreement between biotransformations (3.4 to 3.8) and cobalamin (3.9), but differed markedly for cobaloxime (6.1). These results (i) suggest a similar biodegradation mechanism despite different microbial strains, (ii) indicate that transformation with isolated cobalamin resembles in vivo transformation and (iii) suggest a different mechanism with cobaloxime. This model reactant should therefore be used with caution. Our results demonstrate the power of two-dimensional isotope analyses to characterize and distinguish between reaction mechanisms in whole cell experiments and in vitro model systems.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Solution Reaction-kinetics ; Chlorinated Ethenes ; Vinyl-chloride ; Vitamin-b-12-catalyzed Dechlorination ; Dehalospirillum-multivorans ; Reaction-mechanisms ; Mediated Reduction ; Strain Y51 ; Fractionation ; Tetrachloroethene
ISSN (print) / ISBN
0013-936X
e-ISSN
1520-5851
Quellenangaben
Volume: 47,
Issue: 13,
Pages: 6855-6863
Publisher
American Chemical Society (ACS)
Publishing Place
Washington, DC
Reviewing status
Peer reviewed
Institute(s)
Institute of Groundwater Ecology (IGOE)