Open Access Green as soon as Postprint is submitted to ZB.
High-dimensional Bayesian parameter estimation: Case study for a model of JAK2/STAT5 signaling.
Math. Biosci. 246, 293-304 (2013)
In this work we present results of a detailed Bayesian parameter estimation for an analysis of ordinary differential equation models. These depend on many unknown parameters that have to be inferred from experimental data. The statistical inference in a high-dimensional parameter space is however conceptually and computationally challenging. To ensure rigorous assessment of model and prediction uncertainties we take advantage of both a profile posterior approach and Markov chain Monte Carlo sampling. We analyzed a dynamical model of the JAK2/STAT5 signal transduction pathway that contains more than one hundred parameters. Using the profile posterior we found that the corresponding posterior distribution is bimodal. To guarantee efficient mixing in the presence of multimodal posterior distributions we applied a multi-chain sampling approach. The Bayesian parameter estimation enables the assessment of prediction uncertainties and the design of additional experiments that enhance the explanatory power of the model. This study represents a proof of principle that detailed statistical analysis for quantitative dynamical modeling used in systems biology is feasible also in high-dimensional parameter spaces.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Parameter Estimation ; Bayesian Inference ; Profile Likelihood ; Cellular Signal Transduction Pathways ; Ordinary Differential Equation Models; Chain Monte-carlo; Thermodynamic Integration; Metropolis Algorithm; Likelihood
ISSN (print) / ISBN
0025-5564
e-ISSN
1879-3134
Journal
Mathematical Biosciences
Quellenangaben
Volume: 246,
Issue: 2,
Pages: 293-304
Publisher
Elsevier
Non-patent literature
Publications
Reviewing status
Peer reviewed
Institute(s)
Institute of Computational Biology (ICB)