Solymosi, E.A.* ; Kaestle-Gembardt, S.M.* ; Vadász, I.* ; Wang, L.* ; Neye, N.* ; Chupin, C.J.* ; Rozowsky, S.* ; Ruehl, R.* ; Tabuchi, A.* ; Schulz, H. ; Kapus, A.* ; Morty, R.E.* ; Kuebler, W.M.*
     
    
        
Chloride transport-driven alveolar fluid secretion is a major contributor to cardiogenic lung edema.
    
    
        
    
    
        
        Proc. Natl. Acad. Sci. U.S.A. 110, E2308-E2316 (2013)
    
    
    
      
      
	
	    Alveolar fluid clearance driven by active epithelial Na(+) and secondary Cl(-) absorption counteracts edema formation in the intact lung. Recently, we showed that impairment of alveolar fluid clearance because of inhibition of epithelial Na(+) channels (ENaCs) promotes cardiogenic lung edema. Concomitantly, we observed a reversal of alveolar fluid clearance, suggesting that reversed transepithelial ion transport may promote lung edema by driving active alveolar fluid secretion. We, therefore, hypothesized that alveolar ion and fluid secretion may constitute a pathomechanism in lung edema and aimed to identify underlying molecular pathways. In isolated perfused lungs, alveolar fluid clearance and secretion were determined by a double-indicator dilution technique. Transepithelial Cl(-) secretion and alveolar Cl(-) influx were quantified by radionuclide tracing and alveolar Cl(-) imaging, respectively. Elevated hydrostatic pressure induced ouabain-sensitive alveolar fluid secretion that coincided with transepithelial Cl(-) secretion and alveolar Cl(-) influx. Inhibition of either cystic fibrosis transmembrane conductance regulator (CFTR) or Na(+)-K(+)-Cl(-) cotransporters (NKCC) blocked alveolar fluid secretion, and lungs of CFTR(-/-) mice were protected from hydrostatic edema. Inhibition of ENaC by amiloride reproduced alveolar fluid and Cl(-) secretion that were again CFTR-, NKCC-, and Na(+)-K(+)-ATPase-dependent. Our findings show a reversal of transepithelial Cl(-) and fluid flux from absorptive to secretory mode at hydrostatic stress. Alveolar Cl(-) and fluid secretion are triggered by ENaC inhibition and mediated by NKCC and CFTR. Our results characterize an innovative mechanism of cardiogenic edema formation and identify NKCC1 as a unique therapeutic target in cardiogenic lung edema.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Epithelial Cl- Transport ; Pulmonary Edema; Respiratory-distress-syndrome ; Acute Pulmonary-edema ; Ion-transport ; Na+ Absorption ; Epithelial Ion ; Ii Cells ; Cftr ; Furosemide ; Channels ; Volume
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2013
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2013
    
 
    
    
        ISSN (print) / ISBN
        0027-8424
    
 
    
        e-ISSN
        1091-6490
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 110,  
	    Issue: 25,  
	    Pages: E2308-E2316 
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            National Academy of Sciences
        
 
        
            Publishing Place
            
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
    
        Institute(s)
        Institute of Epidemiology (EPI)
    
 
    
        POF-Topic(s)
        30503 - Chronic Diseases of the Lung and Allergies
    
 
    
        Research field(s)
        Genetics and Epidemiology
    
 
    
        PSP Element(s)
        G-503900-003
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2013-08-01