The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5.
Mol. Plant Microbe Interact. 26, 937-945 (2013)
Gluconacetobacter diazotrophicus is an aerobic diazotrophic plant-growth-promoting bacterium isolated from different gramineous plants. We showed that reactive oxygen species (ROS) were produced at early stages of rice root colonization, a typical plant defense response against pathogens. The transcription of the pathogen-related-10 gene of the jasmonic acid (JA) pathway but not of the PR-1 gene of the salicylic acid pathway was activated by the endophytic colonization of rice roots by G. diazotrophicus strain PALS. Quantitative polymerase chain reaction analyses showed that, at early stages of colonization, the bacteria upregulated the transcript levels of ROS-detoxifying genes such as superoxide dismutase (SOD) and glutathione reductase (GR). To proof the role of ROS-scavenging enzymes in the colonization and interaction process, transposon insertion mutants of the SOD and GR genes of strain PALS were constructed. The SOD and GR mutants were unable to efficiently colonize the roots, indicated by the decrease of tightly root-associated bacterial cell counts and endophytic colonization and by fluorescence in situ hybridization analysis. Interestingly, the mutants did not induce the PR-10 of the JA-pathway, probably due to the inability of endophytic colonization. Thus, ROS-scavenging enzymes of G. diazotrophicus strain PALS play an important role in the endophytic colonization of rice plants.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Biological Nitrogen-fixation ; Induced Systemic Resistance ; Oxidative Burst ; Plant-growth ; Acetobacter-diazotrophicus ; Medicago-truncatula ; Disease Resistance ; Sinorhizobium-meliloti ; Greenhouse Conditions ; Beneficial Microbes
Keywords plus
Language
english
Publication Year
2013
Prepublished in Year
HGF-reported in Year
2013
ISSN (print) / ISBN
0894-0282
e-ISSN
1943-7706
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 26,
Issue: 8,
Pages: 937-945
Article Number: ,
Supplement: ,
Series
Publisher
American Phytopathological Society
Publishing Place
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
20402 - Sustainable Plant Production
Research field(s)
Environmental Sciences
PSP Element(s)
G-504600-001
Grants
Copyright
Erfassungsdatum
2013-08-16