Open Access Green as soon as Postprint is submitted to ZB.
Uncertainty in simulating wheat yields under climate change.
Nat. Clim. Chang. 3, 827-832 (2013)
Projections of climate change impacts on crop yields are inherently uncertain. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models are difficult. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO 2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO 2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development andpolicymaking.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Crop Production ; Models ; Food ; Co2 ; Temperature ; Projections ; Adaptation ; Scenarios ; Ensemble ; Impacts
ISSN (print) / ISBN
1758-678X
e-ISSN
1758-6798
Journal
Nature Climate Change
Quellenangaben
Volume: 3,
Issue: 9,
Pages: 827-832
Publisher
Nature Publishing Group
Non-patent literature
Publications
Reviewing status
Peer reviewed
Institute(s)
Institute of Soil Ecology (IBOE)