PuSH - Publication Server of Helmholtz Zentrum München

Knapp, B.* ; Rebhan, I.* ; Kumar, A.* ; Matula, P.* ; Kiani, N.A.* ; Binder, M.* ; Erfle, H.* ; Rohr, K.B.* ; Eils, R.* ; Bartenschlager, R.* ; Kaderali, L.*

Normalizing for individual cell population context in the analysis of high-content cellular screens.

BMC Bioinformatics 12:485 (2011)
Publ. Version/Full Text DOI PMC
Open Access Gold
BACKGROUND: High-content, high-throughput RNA interference (RNAi) offers unprecedented possibilities to elucidate gene function and involvement in biological processes. Microscopy based screening allows phenotypic observations at the level of individual cells. It was recently shown that a cell's population context significantly influences results. However, standard analysis methods for cellular screens do not currently take individual cell data into account unless this is important for the phenotype of interest, i.e. when studying cell morphology. RESULTS: We present a method that normalizes and statistically scores microscopy based RNAi screens, exploiting individual cell information of hundreds of cells per knockdown. Each cell's individual population context is employed in normalization. We present results on two infection screens for hepatitis C and dengue virus, both showing considerable effects on observed phenotypes due to population context. In addition, we show on a non-virus screen that these effects can be found also in RNAi data in the absence of any virus. Using our approach to normalize against these effects we achieve improved performance in comparison to an analysis without this normalization and hit scoring strategy. Furthermore, our approach results in the identification of considerably more significantly enriched pathways in hepatitis C virus replication than using a standard analysis approach. CONCLUSIONS: Using a cell-based analysis and normalization for population context, we achieve improved sensitivity and specificity not only on a individual protein level, but especially also on a pathway level. This leads to the identification of new host dependency factors of the hepatitis C and dengue viruses and higher reproducibility of results.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
0.000
0.000
14
19
Tags
Icb_extern
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2011
HGF-reported in Year 0
ISSN (print) / ISBN 1471-2105
e-ISSN 1471-2105
Quellenangaben Volume: 12, Issue: , Pages: , Article Number: 485 Supplement: ,
Publisher BioMed Central
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503800-001
PubMed ID 22185194
Erfassungsdatum 2011-12-31