Time-shifting correction in optoacoustic tomographic imaging for media with non-uniform speed of sound.
    
    
        
    
    
        
        Proc. SPIE 8090:809013 (2011)
    
    
    
      
      
	
	    An analysis of the time-shifting correction in optoacoustic tomographic reconstructions for media with an a priori known speed of sound distribution is presented. We describe a modification of the filtered back-projection algorithm, for which the absorbed optical energy at a given point is estimated from the value of the measured signals at the instant corresponding to the time-of-flight between such point and the measuring points. In the case that a non-uniform speed of sound distribution does exist, we estimate the time-of-flight with the straight acoustic rays model, for which acoustic waves are assumed not to change direction as they propagate. The validity of this model is analysed for small speed of sound variations by comparing the predicted values of the time-of-flight with the ones estimated considering the refraction of the waves. Experimental results with tissue-mimicking agar phantoms with a higher speed of sound than water showcase the effects of the time-shifting of the optoacoustic signals caused by the acoustic mismatch. The performance of the time-shifting correction relates to the optoacoustic imaging of biological tissues, for which the speed of sound variations are usually lower than 10%.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Refraction ; Tissues ; Water
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2011
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        0
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        Novel Biophotonic Techniques and Applications
    
 
	
        Conference Date
        May 22, 2011
    
     
	
        Conference Location
        Munich, Germany
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 8090,  
	    Issue: ,  
	    Pages: ,  
	    Article Number: 809013 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            SPIE
        
 
        
            Publishing Place
            
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Research field(s)
        Enabling and Novel Technologies
    
 
    
        PSP Element(s)
        G-505500-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
        Erfassungsdatum
        2011-12-31