In this work, we show, for the first time to our knowledge, that multispectral optoacoustic tomography (MSOT) can deliver high resolution images of activatable molecular probe's distribution, sensitive to matrix metalloproteinases (MMP), deep within optically scattering human carotid specimen. It is further demonstrated that this method can be used in order to provide accurate maps of vulnerable plaque formations in atherosclerotic disease. Moreover, optoacoustic images can simultaneously show the underlining plaque morphology for accurate localization of MMP activity in three dimensions. This performance directly relates to small animal screening applications and to clinical potential as well.