Open Access Green as soon as Postprint is submitted to ZB.
Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation.
Atmos. Environ. 94, 467-478 (2014)
Gas phase emission samples of carbonyl compounds (CCs) were collected from a research ship diesel engine at Rostock University, Germany. The ship engine was operated using two different types of fuels, heavy fuel oil (HFO) and diesel fuel (DF). Sampling of CCs was performed from diluted exhaust using cartridges and impingers. Both sampling methods involved the derivatization of CCs with 2,4-Dinitrophenylhydrazine (DNPH). The CCs-hydrazone derivatives were analyzed by two analytical techniques: High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) and Gas Chromatography-Selective Ion Monitoring-Mass Spectrometry (GC-SIM-MS). Analysis of DNPH cartridges by GC-SIM-MS method has resulted in the identification of 19 CCs in both fuel operations. These CCs include ten aliphatic aldehydes (formaldehyde, acetaldehyde, propanal, isobutanal, butanal, isopentanal, pentanal, hexanal, octanal, nonanal), three unsaturated aldehydes (acrolein, methacrolein, crotonaldehyde), three aromatic aldehyde (benzaldehyde, p-tolualdehyde, m,o-molualdehyde), two ketones (acetone, butanone) and one heterocyclic aldehyde (furfural). In general, all CCs under investigation were detected with higher emission factors in HFO than DF. The total carbonyl emission factor was determined and found to be 6050 and 2300μgMJ-1 for the operation with HFO and DF respectively. Formaldehyde and acetaldehyde were found to be the dominant carbonyls in the gas phase of ship engine emission. Formaldehyde emissions factor varied from 3500μgMJ-1 in HFO operation to 1540μgMJ-1 in DF operation, which is 4-30 times higher than those of other carbonyls. Emission profile contribution of CCs showed also a different pattern between HFO and DF operation. The contribution of formaldehyde was found to be 58% of the emission profile of HFO and about 67% of the emission profile of DF. Acetaldehyde showed opposite behavior with higher contribution of 16% in HFO compared to 11% for DF. Heavier carbonyls (more than two carbon atoms) showed also more contribution in the emission profile of the HFO fuel (26%) than in DF (22%).
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
3.062
1.633
24
24
Annotations
Special Publikation
Hide on homepage
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Carbonyl Compounds ; Dnph ; Gc-sim-ms ; Heavy Fuel Oil ; Ship Emission; Performance Liquid-chromatography; Biodiesel Blends Application; Mainstream Cigarette-smoke; Airborne Carbonyls; Diurnal-variations; Mass-spectrometry; 2,4-dinitrophenylhydrazine; Derivatization; Atmosphere; Isomerization
Language
english
Publication Year
2014
HGF-reported in Year
2014
ISSN (print) / ISBN
1352-2310
e-ISSN
1873-2844
Journal
Atmospheric Environment
Quellenangaben
Volume: 94,
Pages: 467-478
Publisher
Elsevier
Publishing Place
Oxford
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-504500-001
WOS ID
WOS:000340316300051
Scopus ID
84901677482
Erfassungsdatum
2014-06-13