PuSH - Publication Server of Helmholtz Zentrum München

Graf, N.* ; Li, Z.* ; Herrmann, K.* ; Weh, D.* ; Aichler, M. ; Slawska, J.* ; Walch, A.K. ; Peschel, C.* ; Schwaiger, M.* ; Buck, A.K.* ; Dechow, T.* ; Keller, U.*

Positron emission tomographic monitoring of dual phosphatidylinositol-3-kinase and mTOR inhibition in anaplastic large cell lymphoma.

OncoTargets Ther. 7, 789-798 (2014)
Publ. Version/Full Text Volltext DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
BACKGROUND: Dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibition offers an attractive therapeutic strategy in anaplastic large cell lymphoma depending on oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) signaling. We tested the efficacy of a novel dual PI3K/mTOR inhibitor, NVP-BGT226 (BGT226), in two anaplastic large cell lymphoma cell lines in vitro and in vivo and performed an early response evaluation with positron emission tomography (PET) imaging using the standard tracer, 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) and the thymidine analog, 3'-deoxy-3'-[(18)F] fluorothymidine (FLT). METHODS: The biological effects of BGT226 were determined in vitro in the NPM-ALK positive cell lines SU-DHL-1 and Karpas299 by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, propidium iodide staining, and biochemical analysis of PI3K and mTOR downstream signaling. FDG-PET and FLT-PET were performed in immunodeficient mice bearing either SU-DHL-1 or Karpas299 xenografts at baseline and 7 days after initiation of treatment with BGT226. Lymphomas were removed for immunohistochemical analysis of proliferation and apoptosis to correlate PET findings with in vivo treatment effects. RESULTS: SU-DHL-1 cells showed sensitivity to BGT226 in vitro, with cell cycle arrest in G0/G1 phase and an IC50 in the low nanomolar range, in contrast with Karpas299 cells, which were mainly resistant to BGT226. In vivo, both FDG-PET and FLT-PET discriminated sensitive from resistant lymphoma, as indicated by a significant reduction of tumor-to-background ratios on day 7 in treated SU-DHL-1 lymphoma-bearing animals compared with the control group, but not in animals with Karpas299 xenografts. Imaging results correlated with a marked decrease in the proliferation marker Ki67, and a slight increase in the apoptotic marker, cleaved caspase 3, as revealed by immunostaining of explanted lymphoma tissue. CONCLUSION: Dual PI3K/mTOR inhibition using BGT226 is effective in ALK-positive anaplastic large cell lymphoma and can be monitored with both FDG-PET and FLT-PET early on in the course of therapy.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
1.342
0.863
12
12
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Inhibition ; Lymphoma ; Mammalian Target Of Rapamycin ; Phosphatidylinositol-3-kinase ; Positron Emission Tomography; Non-hodgkins-lymphoma; Early Response; Imaging Proliferation; In-vivo; Fdg-pet; Signaling Pathway; Flt-pet; Nvp-bgt226; Target; Tumor
Language english
Publication Year 2014
HGF-reported in Year 2014
ISSN (print) / ISBN 1178-6930
e-ISSN 1178-6930
Quellenangaben Volume: 7, Issue: , Pages: 789-798 Article Number: , Supplement: ,
Publisher Dove Medical Press
Publishing Place Albany, Auckland
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-500390-001
G-500300-001
PubMed ID 24920919
Scopus ID 84901449651
Erfassungsdatum 2014-06-14