Open Access Green as soon as Postprint is submitted to ZB.
Phosphoinositide 3-kinases upregulate system xc - via eukaryotic initiation factor 2α and activating transcription factor 4-A pathway active in glioblastomas and epilepsy.
Antioxid. Redox Signal. 20, 2907-2922 (2014)
Aims: Phosphoinositide 3-kinases (PI3Ks) relay growth factor signaling and mediate cytoprotection and cell growth. The cystine/glutamate antiporter system xc - imports cystine while exporting glutamate, thereby promoting glutathione synthesis while increasing extracellular cerebral glutamate. The aim of this study was to analyze the pathway through which growth factor and PI3K signaling induce the cystine/glutamate antiporter system x c - and to demonstrate its biological significance for neuroprotection, cell growth, and epilepsy. Results: PI3Ks induce system x c - through glycogen synthase kinase 3β (GSK-3β) inhibition, general control non-derepressible-2-mediated eukaryotic initiation factor 2α phosphorylation, and the subsequent translational up-regulation of activating transcription factor 4. This pathway is essential for PI3Ks to modulate oxidative stress resistance of nerve cells and insulin-induced growth in fibroblasts. Moreover, the pathway is active in human glioblastoma cells. In addition, it is induced in primary cortical neurons in response to robust neuronal activity and in hippocampi from patients with temporal lobe epilepsy. Innovation: Our findings further extend the concepts of how growth factors and PI3Ks induce neuroprotection and cell growth by adding a new branch to the signaling network downstream of GSK-3β, which, ultimately, leads to the induction of the cystine/glutamate antiporter system xc -. Importantly, the induction of this pathway by neuronal activity and in epileptic hippocampi points to a potential role in epilepsy. Conclusion: PI3K-regulated system xc - activity is not only involved in the stress resistance of neuronal cells and in cell growth by increasing the cysteine supply and glutathione synthesis, but also plays a role in the pathophysiology of tumor- and non-tumor-associated epilepsy by up-regulating extracellular cerebral glutamate.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Human Neuroblastoma-cells; Primary Brain-tumors; Nf-kappa-b; Oxidative Stress; Gene-expression; Translational Control; Glutamate Toxicity; Transporter Gene; Response Element; Kinase-b
ISSN (print) / ISBN
1523-0864
e-ISSN
1557-7716
Journal
Antioxidants & Redox Signaling
Quellenangaben
Volume: 20,
Issue: 18,
Pages: 2907-2922
Publisher
Mary Ann Liebert
Publishing Place
New Rochelle
Non-patent literature
Publications
Reviewing status
Peer reviewed
Institute(s)
Institute of Developmental Genetics (IDG)