Dokumente im Korb
Helmholtz Zentrum München
|
Imprint
PuSH - Publication Server of Helmholtz Zentrum München
Navigation
Home
Deutsch
Research
Advanced Search
Browse by ...
... Journal
... Publication Type
... Research Data
... Publication Year
Publication overview
Support & Contact
Contact persons
Help
Data protection
Müller, C.
;
Kanawati, B.
;
Rock, T.
;
Forcisi, S.
;
Moritz, F.
;
Schmitt-Kopplin, P.
Dimer ion formation and intermolecular fragmentation of 1,2-diacylglycerols revealed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for more comprehensive lipid analysis.
Rapid Commun. Mass Spectrom.
28
, 1735-1744 (2014)
DOI
PMC
Open Access Green
as soon as Postprint is submitted to ZB.
Abstract
Metrics
Extra information
RATIONALE: The ionization of neutral diacylglycerols (DAGs) by electrospray ionization mass spectrometry (ESI-MS) is challenging compared with other lipid classes which possess ionic head group conjugations. Although ESI-MS is the method of choice in lipidomic analysis, it is questionable whether all lipid classes can be efficiently ionized by this method. Actually, various lipids were not efficiently detected (due to poor ionization) in many studies which claimed to comprehensively describe lipid profiles. Since neutral lipids are precursors for the biosynthesis of most other lipid classes, the necessity for improved or alternative ionization and identification schemes becomes obvious. METHODS: We identified the 1,2-diacylglycerol (DAG) dimer ion formation in the gas phase by ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in negative electrospray ionization ((-)ESI) mode. The geometry of the dimer ion was investigated by accurate density functional theory (DFT) calculations at the B3LYP/6-311+G(d)//B3LYP/LANL2DZ level of theory. Fragmentation of the dimer ions of many investigated DAGs has been achieved via collision-induced dissociation (CID) experiments with several elevated collision energies (0-12 eV). RESULTS: We revealed the possibility to ionize neutral DAGs as dimer ions in the negative ESI mode. Quantum mechanical calculations revealed a polar head-to-head intermolecular interaction between one charged DAG and one DAG neutral. This represents an energy minimum structure for the DAG dimer ions. We could furthermore detect CID fragmentation product ions that can only result from intermolecular reactions in this head-to-head conformation (SN2 nucleophilic substitution reactions inside the dimer DAG ion). CONCLUSIONS: Here, we present for the first time the opportunity to ionize and identify DAGs as dimer ions. This new finding provides a new alternative for investigations of important diacylglycerol lipids and provides the opportunity to obtain complementary and more comprehensive results in future lipidomic studies. Copyright © 2014 John Wiley & Sons, Ltd.
Altmetric
Additional Metrics?
[➜Log in]
Tags
Annotations
Special Publikation
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Corresponding Author
Keywords
Protein-kinase-c; Signal-transduction; Insulin-resistance; Biological Samples; Diacylglycerol; Suppression; Plasma; Quantification; Phospholipids; Precipitation
Keywords plus
ISSN (print) / ISBN
0951-4198
e-ISSN
1097-0231
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Journal
Rapid Communications in Mass Spectrometry
Quellenangaben
Volume: 28,
Issue: 15,
Pages: 1735-1744
Article Number: ,
Supplement: ,
Series
Publisher
Wiley
Publishing Place
Hoboken
University
University place
Faculty
Publication date
0000-00-00
Application number
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Non-patent literature
Publications
Reviewing status
Peer reviewed
Institute(s)
Research Unit BioGeoChemistry and Analytics (BGC)
Grants