PuSH - Publication Server of Helmholtz Zentrum München

Palau, J.* ; Cretnik, S. ; Shouakar-Stash, O.* ; Höche, M. ; Elsner, M. ; Hunkeler, D.*

C and Cl isotope fractionation of 1,2-dichloroethane displays unique δ13C/δ37Cl patterns for pathway identification and reveals surprising C-Cl bond involvement in microbial oxidation.

Environ. Sci. Technol. 48, 9430-9437 (2014)
DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
This study investigates dual element isotope fractionation during aerobic biodegradation of 1,2-dichloroethane (1,2-DCA) via oxidative cleavage of a C–H bond (Pseudomonas sp. strain DCA1) versus C–Cl bond cleavage by SN2 reaction (Xanthobacter autotrophicus GJ10 and Ancylobacter aquaticus AD20). Compound-specific chlorine isotope analysis of 1,2-DCA was performed for the first time, and isotope fractionation (εbulkCl) was determined by measurements of the same samples in three different laboratories using two gas chromatography–isotope ratio mass spectrometry systems and one gas chromatography–quadrupole mass spectrometry system. Strongly pathway-dependent slopes (Δδ13C/Δδ37Cl), 0.78 ± 0.03 (oxidation) and 7.7 ± 0.2 (SN2), delineate the potential of the dual isotope approach to identify 1,2-DCA degradation pathways in the field. In contrast to different εbulkC values [−3.5 ± 0.1‰ (oxidation) and −31.9 ± 0.7 and −32.0 ± 0.9‰ (SN2)], the obtained εbulkCl values were surprisingly similar for the two pathways: −3.8 ± 0.2‰ (oxidation) and −4.2 ± 0.1 and −4.4 ± 0.2‰ (SN2). Apparent kinetic isotope effects (AKIEs) of 1.0070 ± 0.0002 (13C-AKIE, oxidation), 1.068 ± 0.001 (13C-AKIE, SN2), and 1.0087 ± 0.0002 (37Cl-AKIE, SN2) fell within expected ranges. In contrast, an unexpectedly large secondary 37Cl-AKIE of 1.0038 ± 0.0002 reveals a hitherto unrecognized involvement of C–Cl bonds in microbial C–H bond oxidation. Our two-dimensional isotope fractionation patterns allow for the first time reliable 1,2-DCA degradation pathway identification in the field, which unlocks the full potential of isotope applications for this important groundwater contaminant.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Xanthobacter-autotrophicus Gj10; Volatile Organic-compounds; Ratio Mass-spectrometry; Reductive Dechlorination; Chlorinated Ethenes; Strain Dca1; Carbon; Biodegradation; Groundwater; Degradation
ISSN (print) / ISBN 0013-936X
e-ISSN 1520-5851
Quellenangaben Volume: 48, Issue: 16, Pages: 9430-9437 Article Number: , Supplement: ,
Publisher ACS
Publishing Place Washington, DC
Non-patent literature Publications
Reviewing status Peer reviewed