Comparative study on the impact of copper sulphate and copper nitrate on the detoxification mechanisms in Typha latifolia.
    
    
        
    
    
        
        Environ. Sci. Pollut. Res. 22, 657-666 (2015)
    
    
 	
    
	
	  DOI
 DOI
	  PMC
 PMC
		
		
			Open Access Green as soon as Postprint is submitted to ZB.
		
     
    
      
      
	
	    The present study focused on cupric sulphate and cupric nitrate uptake in Typha latifolia and the impact of these copper species on the plant's detoxification capacity. When the plants were exposed to 10, 50 and 100 μM cupric sulphate or cupric nitrate, copper accumulation in T. latifolia roots and shoots increased with rising concentration of the salts. Shoot to root ratios differed significantly depending on the form of copper supplementation, e.g. if it was added as cupric (II) sulphate or cupric (II) nitrate. After incubation with 100 μM of cupric sulphate, up to 450 mg Cu/kg fresh weight (FW) was accumulated, whereas the same concentration of cupric nitrate resulted in accumulation of 580 mg/kg FW. Furthermore, significant differences in the activity of some antioxidative enzymes in Typha roots compared to the shoots, which are essential in the plant's reaction to cope with metal stress, were observed. The activity of peroxidase (POX) in roots was increased at intermediate concentrations (10 and 50 μM) of CuSO4, whereas it was inhibited at the same Cu(NO3)2 concentrations. Ascorbate peroxidase (APOX) and dehydroascorbate reductase (DHAR) increased their enzyme activity intensely, which may be an indication for copper toxicity in T. latifolia plants. Besides, fluorodifen conjugation by glutathione S-transferases (GSTs) was increased up to sixfold, especially in roots.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Antioxidative Enzymes ; Cupric Nitrate ; Cupric Sulphate ; Typha Latifolia; Antioxidant Enzymes; Lipid-peroxidation; Excess Copper; Metal; Glutathione; Toxicity; Plants; Sunflower; Growth; Tolerance
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2015
    
 
    
        Prepublished in Year
        2014
    
 
    
        HGF-reported in Year
        2014
    
 
    
    
        ISSN (print) / ISBN
        0944-1344
    
 
    
        e-ISSN
        1614-7499
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 22,  
	    Issue: 1,  
	    Pages: 657-666 
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Springer
        
 
        
            Publishing Place
            Heidelberg
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        20402 - Sustainable Plant Production
30202 - Environmental Health
    
 
    
        Research field(s)
        Environmental Sciences
    
 
    
        PSP Element(s)
        G-504600-002
G-504800-002
G-504991-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
    
        Erfassungsdatum
        2014-08-08