PuSH - Publication Server of Helmholtz Zentrum München

Pichlo, M.* ; Bungert-Plümke, S.* ; Weyand, I.* ; Seifert, R.* ; Bönigk, W.* ; Strünker, T.* ; Kashikar, N.D.* ; Goodwin, N.* ; Müller, A.* ; Pelzer, P.* ; Van, Q.* ; Enderlein, J.* ; Klemm, C.* ; Krause, E.* ; Trötschel, C.* ; Poetsch, A.* ; Kremmer, E. ; Kaupp, U.B.*

High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor.

J. Cell Biol. 206, 541-557 (2014)
Publ. Version/Full Text DOI PMC
Closed
Open Access Green as soon as Postprint is submitted to ZB.
Guanylyl cyclases (GCs), which synthesize the messenger cyclic guanosine 3',5'-monophosphate, control several sensory functions, such as phototransduction, chemosensation, and thermosensation, in many species from worms to mammals. The GC chemoreceptor in sea urchin sperm can decode chemoattractant concentrations with single-molecule sensitivity. The molecular and cellular underpinnings of such ultrasensitivity are not known for any eukaryotic chemoreceptor. In this paper, we show that an exquisitely high density of 3 × 10(5) GC chemoreceptors and subnanomolar ligand affinity provide a high ligand-capture efficacy and render sperm perfect absorbers. The GC activity is terminated within 150 ms by dephosphorylation steps of the receptor, which provides a means for precise control of the GC lifetime and which reduces "molecule noise." Compared with other ultrasensitive sensory systems, the 10-fold signal amplification by the GC receptor is surprisingly low. The hallmarks of this signaling mechanism provide a blueprint for chemical sensing in small compartments, such as olfactory cilia, insect antennae, or even synaptic boutons.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
9.688
2.301
26
30
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Natriuretic-peptide Receptor; Nucleotide-gated Channels; Sea-urchin Sperm; Single-photon Responses; Kinase Homology Domain; De-novo Peptide; Phosphorylation Sites; Structure Prediction; Corynebacterium-glutamicum; Caenorhabditis-elegans
Language english
Publication Year 2014
HGF-reported in Year 2014
ISSN (print) / ISBN 0021-9525
e-ISSN 1540-8140
Quellenangaben Volume: 206, Issue: 4, Pages: 541-557 Article Number: , Supplement: ,
Publisher Rockefeller University Press
Publishing Place New York
Reviewing status Peer reviewed
POF-Topic(s) 30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
Research field(s) Immune Response and Infection
PSP Element(s) G-501793-001
PubMed ID 25135936
Scopus ID 84906515139
Erfassungsdatum 2014-08-21