Open Access Green as soon as Postprint is submitted to ZB.
Rapid assessment of the coenzyme Q10 redox state using ultrahigh performance liquid chromatography tandem mass spectrometry.
Analyst 139, 5600-5604 (2014)
An improved method for accurate and rapid assessment of the coenzyme Q10 (CoQ10) redox state using ultrahigh performance liquid chromatography tandem mass spectrometry was described, with particular attention given to the instability of the reduced form of CoQ10 during sample preparation, chromatographic separation and mass spectrometric detection. As highly lipophilic compounds in complex biological matrices, both reduced and oxidized forms of CoQ10 were extracted simultaneously from the tissue samples by methanol which is superior to ethanol and isopropanol. After centrifugation, the supernatants were immediately separated on a C18 column with isocratic elution using methanol containing 2 mM ammonium acetate as a non-aqueous mobile phase, and detected by positive electrospray ionization tandem mass spectrometry in multiple reaction monitoring (MRM) mode. Ammonium acetate as an additive in methanol provided enhanced mass spectrometric responses for both forms of CoQ10, primarily due to stable formation of adduct ions [M + NH4](+), which served as precursor ions in positive ionization MRM transitions. The assay showed a linear range of 8.6-8585 ng mL(-1) for CoQ10H2 and 8.6-4292 ng mL(-1) for CoQ10. The limits of detection (LODs) were 7.0 and 1.0 ng mL(-1) and limits of quantification (LOQs) were 15.0 and 5.0 ng mL(-1) for CoQ10H2 and CoQ10, respectively. This rapid extractive and analytical method could avoid artificial auto-oxidation of the reduced form of CoQ10, enabling the native redox state assessment. This reliable method was also successfully applied for the measurement of the CoQ10 redox state in liver tissues of mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin, revealing the down-regulated mitochondrial electron transport chain.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Biological Samples; Oxidative Stress; Human Plasma; Human Serum; Antioxidant; Tissues; Ubiquinone-10; Ubiquinol-10; Expression; Cells
ISSN (print) / ISBN
0003-2654
e-ISSN
1364-5528
Journal
Analyst, The
Quellenangaben
Volume: 139,
Issue: 21,
Pages: 5600-5604
Publisher
Royal Society of Chemistry (RSC)
Publishing Place
Cambridge
Non-patent literature
Publications
Reviewing status
Peer reviewed
Institute(s)
Research Unit Analytical BioGeoChemistry (BGC)