PuSH - Publication Server of Helmholtz Zentrum München

Harzheim, D.* ; Pfeiffer, K.H.* ; Fabritz, L.* ; Kremmer, E. ; Buch, T.* ; Waisman, A.* ; Kirchhof, P.* ; Kaupp, U.B.* ; Seifert, R.*

Cardiac pacemaker function of HCN4 channels in mice is confined to embryonic development and requires cyclic AMP.

EMBO J. 27, 692-703 (2008)
DOI
Open Access Green as soon as Postprint is submitted to ZB.
Important targets for cAMP signalling in the heart are hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels that underlie the depolarizing 'pacemaker' current, I(f). We studied the role of I(f) in mice, in which binding of cAMP to HCN4 channels was abolished by a single amino-acid exchange (R669Q). Homozygous HCN4(R669Q/R669Q) mice die during embryonic development. Prior to E12, homozygous and heterozygous embryos display reduced heart rates and show no or attenuated responses to catecholaminergic stimulation. Adult heterozygous mice display normal heart rates at rest and during exercise. However, following beta-adrenergic stimulation, hearts exhibit pauses and sino-atrial node block. Our results demonstrate that in the embryo, HCN4 is a true cardiac pacemaker and elevation of HCN4 channel activity by cAMP is essential for viability. In adult mice, an important function of HCN4 channels is to prevent sinus pauses during and after stress while their role as a pacemaker of the murine heart is put into question. Most importantly, our results indicate that HCN4 channels can fulfil their physiological function only when cAMP is bound.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords cardiology; cyclic nucleotides; heart; ion channel; signalling
ISSN (print) / ISBN 0261-4189
e-ISSN 1460-2075
Quellenangaben Volume: 27, Issue: 4, Pages: 692-703 Article Number: , Supplement: ,
Publisher Wiley
Publishing Place Heidelberg, Germany
Non-patent literature Publications
Reviewing status Peer reviewed