Open Access Green as soon as Postprint is submitted to ZB.
Comparing land use regression and dispersion modelling to assess residential exposure to ambient air pollution for epidemiological studies.
Environ. Int. 73, 382-392 (2014)
BACKGROUND: Land-use regression (LUR) and dispersion models (DM) are commonly used for estimating individual air pollution exposure in population studies. Few comparisons have however been made of the performance of these methods. OBJECTIVES: Within the European Study of Cohorts for Air Pollution Effects (ESCAPE) we explored the differences between LUR and DM estimates for NO2, PM10 and PM2.5. METHODS: The ESCAPE study developed LUR models for outdoor air pollution levels based on a harmonised monitoring campaign. In thirteen ESCAPE study areas we further applied dispersion models. We compared LUR and DM estimates at the residential addresses of participants in 13 cohorts for NO2; 7 for PM10 and 4 for PM2.5. Additionally, we compared the DM estimates with measured concentrations at the 20-40 ESCAPE monitoring sites in each area. RESULTS: The median Pearson R (range) correlation coefficients between LUR and DM estimates for the annual average concentrations of NO2, PM10 and PM2.5 were 0.75 (0.19-0.89), 0.39 (0.23-0.66) and 0.29 (0.22-0.81) for 112,971 (13 study areas), 69,591 (7) and 28,519 (4) addresses respectively. The median Pearson R correlation coefficients (range) between DM estimates and ESCAPE measurements were of 0.74 (0.09-0.86) for NO2; 0.58 (0.36-0.88) for PM10 and 0.58 (0.39-0.66) for PM2.5. CONCLUSIONS: LUR and dispersion model estimates correlated on average well for NO2 but only moderately for PM10 and PM2.5, with large variability across areas. DM predicted a moderate to large proportion of the measured variation for NO2 but less for PM10 and PM2.5.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Air Pollution ; Cohort ; Dispersion Modelling ; Exposure ; Land Use Regression
ISSN (print) / ISBN
0160-4120
e-ISSN
1873-6750
Journal
Environment International
Quellenangaben
Volume: 73,
Pages: 382-392
Publisher
Elsevier
Non-patent literature
Publications
Reviewing status
Peer reviewed
Institute(s)
Institute of Epidemiology II (EPI2)