PuSH - Publication Server of Helmholtz Zentrum München

Skruszewicz, S.* ; Passig, J.* ; Przystawik, A.* ; Truong, N.X.* ; Koether, M.* ; Tiggesbaeumker, J.* ; Meiwes-Broer, K.-.*

A new design for imaging of fast energetic electrons.

Int. J. Mass Spectrom. 365, 338-342 (2014)
DOI
Open Access Green as soon as Postprint is submitted to ZB.
We report on an essentially improved version of the classical Eppink-Parker velocity map imaging spectrometer design (Rev. Sci. Instrum. 68, 3477 (1997)). By adding electrostatic lenses with an opposite polarity to the extraction system we succeeded in extending the range of detection of energetic particles up to the key regime at moderate (<20 kV) extraction voltage conditions. Simulations show that the electrostatic lens system acts in analogy to an achromatic lens in optics and leads to a reduction in the chromatic energy aberration. For comparison to other setups a transmission parameter of the extraction system is defined denoting the maximum kinetic energies of particles which can be analyzed. Detector size and spectrometer length only enter via geometry, that is the straight trajectories in the subsequent field-free particle drift. With respect to Eppink-Parker the energy range has been extended by a factor of 2.5. Moreover, particle trajectory simulations demonstrate that the energy resolution can be improved by about 20%. To test the performance, photoemission studies have been conducted to resolve above-threshold-ionization patterns from Xe atoms exposed to intense ultrashort laser pulses as well as single photon ionization of Ne atoms using tunable synchrotron radiation with photon energies up to 600 eV.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Angular Distribution ; Photoemission ; Photoelectron Spectra ; Strong-field Excitation ; Synchrotron Radiation; Above-threshold Ionization; Multiphoton Ionization; 2-photon Dissociation; Angular-distribution; Cross-sections; Laser Fields; Photoelectron; Photoionization; Radiation; Xenon
ISSN (print) / ISBN 1387-3806
e-ISSN 1873-2798
Quellenangaben Volume: 365, Issue: , Pages: 338-342 Article Number: , Supplement: ,
Publisher Elsevier
Publishing Place Amsterdam
Non-patent literature Publications
Reviewing status Peer reviewed