Open Access Green as soon as Postprint is submitted to ZB.
Laser ionization of H2S and ion-molecule reactions of H3S+ in laser-based ion mobility spectrometry and drift cell time-of-flight mass spectrometry.
Anal. Bioanal. Chem. 405, 7031-9 (2013)
The detection of hydrogen sulfide (H2S) by 2 + 1 resonance-enhanced multi-photon ionization (REMPI) and the application of H2S as a laser dopant for the detection of polar compounds in laser ion mobility (IM) spectrometry at atmospheric pressure were investigated. Underlying ionization mechanisms were elucidated by additional studies employing a drift cell interfaced to a time-of-flight mass spectrometer. Depending on the pressure, the primary ions H2S(+), HS(+), S(+), and secondary ions, such as H3S(+), were observed. The 2 + 1 REMPI spectrum of H2S near λ = 302.5 nm was recorded at atmospheric pressure. Furthermore, the limit of detection and the linear range were established. In the second part of the work, H2S was investigated as an H2O analogous laser dopant for the ionization of polar substances by proton transfer. H2S exhibits a proton affinity (PA) similar to that of H2O, but a significantly lower ionization energy facilitating laser ionization. Ion-molecule reactions (IMR) of H3S(+) with a variety of polar substances with PA between 754.6 and 841.6 kJ/mol were investigated. Representatives of different compound classes, including alcohols, ketones, esters, and nitroaromatics were analyzed. The IM spectra resulting from IMR of H3S(+) and H3O(+) with these substances are similar in structure, i.e., protonated monomer and dimer ion peaks are found depending on the analyte concentration.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
ISSN (print) / ISBN
1618-2642
e-ISSN
1618-2650
Quellenangaben
Volume: 405,
Issue: 22,
Pages: 7031-9
Publisher
Springer
Publishing Place
Heidelberg
Non-patent literature
Publications
Reviewing status
Peer reviewed