A human leukaemic cell line (REH) growing in suspension was incubated with cis-platinum, hydroxyurea and mitomycin C at various concentrations causing complete cell-cycle arrest. At different times the cell suspensions were harvested, diluted 1:1 with a buffer solution, stained without further treatment with a mixture of acridine orange (AO) and ethidium bromide (EB) and analysed with a biparametrical flow cytometer. Fluorescent plastic beads were introduced into the suspensions to provide an internal numerical reference for the control of cell loss. The fluorescence distributions showed three groups of cells: vital cells (V) which were only stained with AO; dead cells in which EB stained cytoplasmic components but not the nuclear DNA (D1), and dead cells which allowed EB to stain both cytoplasm and nuclear DNA (D2). The kinetics of cells entering D1 depended on drug concentration and showed equal characteristics for cis-platinum and mitomycin, but were different for hydroxyurea. The subsequent entry into D2 occurred about 15 hr later and showed no pronounced dependence on drug concentration. Parallel trypan-blue (TB) exclusion tests revealed that TB only stained D2 cells and therefore is not useful for investigating cell-death kinetics exposure to cell-killing agents.