PuSH - Publication Server of Helmholtz Zentrum München

Applying negative rule mining to improve genome annotation.

BMC Bioinformatics 8:261 (2007)
Publ. Version/Full Text Volltext DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Unsupervised annotation of proteins by software pipelines suffers from very high error rates. Spurious functional assignments are usually caused by unwarranted homology-based transfer of information from existing database entries to the new target sequences. We have previously demonstrated that data mining in large sequence annotation databanks can help identify annotation items that are strongly associated with each other, and that exceptions from strong positive association rules often point to potential annotation errors. Here we investigate the applicability of negative association rule mining to revealing erroneously assigned annotation items. RESULTS: Almost all exceptions from strong negative association rules are connected to at least one wrong attribute in the feature combination making up the rule. The fraction of annotation features flagged by this approach as suspicious is strongly enriched in errors and constitutes about 0.6% of the whole body of the similarity-transferred annotation in the PEDANT genome database. Positive rule mining does not identify two thirds of these errors. The approach based on exceptions from negative rules is much more specific than positive rule mining, but its coverage is significantly lower. CONCLUSION: Mining of both negative and positive association rules is a potent tool for finding significant trends in protein annotation and flagging doubtful features for further inspection.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords PROTEIN SEQUENCES; DATABASE; RESOURCE; PEDANT; YEAST; MIPS
ISSN (print) / ISBN 1471-2105
e-ISSN 1471-2105
Quellenangaben Volume: 8, Issue: , Pages: , Article Number: 261 Supplement: ,
Publisher BioMed Central
Non-patent literature Publications
Reviewing status Peer reviewed