PuSH - Publication Server of Helmholtz Zentrum München

Kaufmann, S.* ; Frishman, D.

Analysis of micro-rearrangements in 25 eukaryotic species pairs by SyntenyMapper.

PLoS ONE 9:e112341 (2014)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
High-quality mapping of genomic regions and genes between two organisms is an indispensable prerequisite for evolutionary analyses and comparative genomics. Existing approaches to this problem focus on either delineating orthologs or finding extended sequence regions of common evolutionary origin (syntenic blocks). We propose SyntenyMapper, a novel tool for refining predefined syntenic regions. SyntenyMapper creates a set of blocks with conserved gene order between two genomes and finds all minor rearrangements that occurred since the evolutionary split of the two species considered. We also present TrackMapper, a SyntenyMapper-based tool that allows users to directly compare genome features, such as histone modifications, between two organisms, and identify genes with highly conserved features. We demonstrate SyntenyMapper's advantages by conducting a large-scale analysis of micro-rearrangements within syntenic regions of 25 eukaryotic species. Unsurprisingly, the number and length of syntenic regions is correlated with evolutionary distance, while the number of micro-rearrangements depends only on the size of the harboring region. On the other hand, the size of rearranged regions remains relatively constant regardless of the evolutionary distance between the organisms, implying a length constraint in the rearrangement process. SyntenyMapper is a useful software tool for both large-scale and gene-centric genome comparisons.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.534
1.100
2
2
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Genome Rearrangements; Sleeping-beauty; Transposon; Vertebrates
Language english
Publication Year 2014
HGF-reported in Year 2014
ISSN (print) / ISBN 1932-6203
Journal PLoS ONE
Quellenangaben Volume: 9, Issue: 11, Pages: , Article Number: e112341 Supplement: ,
Publisher Public Library of Science (PLoS)
Publishing Place Lawrence, Kan.
Reviewing status Peer reviewed
POF-Topic(s) 30505 - New Technologies for Biomedical Discoveries
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503700-001
PubMed ID 25375783
Scopus ID 84909992297
Erfassungsdatum 2014-11-17