Sun, C.* ; Schattgen, S.A.* ; Pisitkun, P.* ; Jorgensen, J.P.* ; Hilterbrand, A.T.* ; Wang, L.J.* ; West, J.A.* ; Hansen, K.* ; Horan, K.A.* ; Jakobsen, M.R.* ; O'Hare, P.* ; Adler, H. ; Sun, R.* ; Ploegh, H.L.* ; Damania, B.* ; Upton, J.W.* ; Fitzgerald, K.A.* ; Paludan, S.R.*
Evasion of innate cytosolic DNA sensing by a gammaherpesvirus facilitates establishment of latent infection.
J. Immunol. 194, 1819-1831 (2015)
Herpesviruses are DNA viruses harboring the capacity to establish lifelong latent-recurrent infections. There is limited knowledge about viruses targeting the innate DNA-sensing pathway, as well as how the innate system impacts on the latent reservoir of herpesvirus infections. In this article, we report that murine gammaherpesvirus 68 (MHV68), in contrast to α- and β-herpesviruses, induces very limited innate immune responses through DNA-stimulated pathways, which correspondingly played only a minor role in the control of MHV68 infections in vivo. Similarly, Kaposi's sarcoma-associated herpesvirus also did not stimulate immune signaling through the DNA-sensing pathways. Interestingly, an MHV68 mutant lacking deubiquitinase (DUB) activity, embedded within the large tegument protein open reading frame (ORF)64, gained the capacity to stimulate the DNA-activated stimulator of IFN genes (STING) pathway. We found that ORF64 targeted a step in the DNA-activated pathways upstream of the bifurcation into the STING and absent in melanoma 2 pathways, and lack of the ORF64 DUB was associated with impaired delivery of viral DNA to the nucleus, which, instead, localized to the cytoplasm. Correspondingly, the ORF64 DUB active site mutant virus exhibited impaired ability to establish latent infection in wild-type, but not STING-deficient, mice. Thus, gammaherpesviruses evade immune activation by the cytosolic DNA-sensing pathway, which, in the MHV68 model, facilitates establishment of infections.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Sarcoma-associated Herpesvirus; Plasmacytoid Dendritic Cells; Bacterial Artificial Chromosome; I Interferon Response; Intracellular Dna; Tlr9 Contributes; Recognition; Ifi16; Immunity; Protein
Keywords plus
Language
english
Publication Year
2015
Prepublished in Year
HGF-reported in Year
2015
ISSN (print) / ISBN
0022-1767
e-ISSN
1550-6606
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 194,
Issue: 4,
Pages: 1819-1831
Article Number: ,
Supplement: ,
Series
Publisher
American Association of Immunologists
Publishing Place
Bethesda
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30203 - Molecular Targets and Therapies
Research field(s)
Immune Response and Infection
PSP Element(s)
G-501500-006
Grants
Copyright
Erfassungsdatum
2015-01-19