Open Access Green as soon as Postprint is submitted to ZB.
		
    BetaIV spectrins are essential for membrane stability and the molecular organization of nodes of Ranvier.
        
        J. Neurosci. 24, 7230-7240 (2004)
    
    
    
	    High densities of sodium channels at nodes of Ranvier permit action potential conduction and depend on betaIV spectrins, a family of scaffolding proteins linked to the cortical actin cytoskeleton. To investigate the molecular organization of nodes, we analyzed qv(3J)"quivering" mice, whose betaIV spectrins have a truncated proline-rich "specific" domain (SD) and lack the pleckstrin homology (PH) domain. Central nodes of qv(3J) mice, which lack betaIV spectrins, are significantly broader and have prominent vesicle-filled nodal membrane protrusions, whereas axon shape and neurofilament density are dramatically altered. PNS qv(3J) nodes, some with detectable betaIV spectrins, are less affected. In contrast, a larger truncation of betaIV spectrins in qv(4J) mice, deleting the SD, PH, and ankyrinG binding domains, causes betaIV spectrins to be undetectable and causes dramatic changes, even in peripheral nodes. These results show that quivering mutations disrupt betaIV spectrin retention and stability at nodes and that distinct protein domains regulate nodal structural integrity and molecular organization.
	
	
      Impact Factor
		Scopus SNIP
		
		
		Altmetric
		
	    0.000
		0.000
		
		
		
	    Annotations
	    
		
		     
		    
		
	    
	
		
	
	    Special Publikation
	    
		
		     
		
	    
	
	
	
	    Hide on homepage
	    
		
		     
		
	    
	
	
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
     
    
     
     
    
    
        Language
        english
    
 
    
        Publication Year
        2004
    
 
     
    
        HGF-reported in Year
        0
    
 
    
    
        ISSN (print) / ISBN
        0270-6474
    
 
    
        e-ISSN
        1529-2401
    
 
    
     
     
	     
	 
	 
    
        Journal
        Journal of Neuroscience
    
 
	
    
        Quellenangaben
        
	    Volume: 24,  
	    Issue: 33,  
	    Pages: 7230-7240 
	    
	    
	
    
 
    
         
        
            Publisher
            Society for Neuroscience
        
 
         
	
         
         
         
         
         
	
         
         
         
    
         
         
         
         
         
         
         
    
        Reviewing status
        Peer reviewed
    
 
    
        Institute(s)
        Institute of Pancreatic Islet Research (IPI)
    
 
     
     
     
     
     	
    
        PubMed ID
        15317849
    
    
    
        Erfassungsdatum
        2004-12-31