Open Access Gold as soon as Publ. Version/Full Text is submitted to ZB.
Three-dimensional organization of the archaeal A1-ATPase from Methanosarcina mazei Gö1.
J. Biol. Chem. 279, 22759-22764 (2004)
A modified isolation procedure provides a homogeneous A(1)-ATPase from the archaeon Methanosarcina mazei Gö1, containing the five subunits in stoichiometric amounts of A(3):B(3):C:D:F. A(1) obtained in this way was characterized by three-dimensional electron microscopy of single particles, resulting in the first three-dimensional reconstruction of an A(1)-ATPase at a resolution of 3.2 nm. The A(1) consists of a headpiece of 10.2 nm in diameter and 10.8 nm in height, formed by the six elongated subunits A(3) and B(3). At the bottom of the A(3)B(3) complex, a stalk of 3.0 nm in length can be seen. The A(3)B(3) domain surrounds a large cavity that extends throughout the length of the A(3)B(3) barrel. A part of the stalk penetrates inside this cavity and is displaced toward an A-B-A triplet. To investigate further the topology of the stalk subunits C-F in A(1), cross-linking has been carried out by using dithiobis[sulfosuccinimidylpropionate] (DSP) and 1-ethyl-3-(dimethylaminopropyl)-carbodiimide (EDC). In experiments where DSP was added the cross-linked products B-F, A(x)-D, A-B-D, and A(x)-B(x)-D were formed. Subunits B-F, A-D, A-B-D, and A-B-C-D could be cross-linked by EDC. The subunit-subunit interaction in the presence of DSP was also studied as a function of nucleotide binding, demonstrating movements of subunits C, D, and F during ATP cleavage. Finally, the three-dimensional organization of this A(1) complex is discussed in terms of the relationship to the F(1)- and V(1)-ATPases at a resolution of 3.2 nm.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.000
Annotations
Special Publikation
Hide on homepage
Publication type
Article: Journal article
Document type
Scientific Article
Language
english
Publication Year
2004
HGF-reported in Year
0
ISSN (print) / ISBN
0021-9258
e-ISSN
1083-351X
Quellenangaben
Volume: 279,
Issue: 21,
Pages: 22759-22764
Publisher
American Society for Biochemistry and Molecular Biology
Reviewing status
Peer reviewed
Institute(s)
Institute of Pancreatic Islet Research (IPI)
PubMed ID
14988401
Erfassungsdatum
2004-12-31