PuSH - Publication Server of Helmholtz Zentrum München

Lenoir, M.* ; Grzybek, M. ; Majkowski, M.* ; Rajesh, S.* ; Kaur, J.* ; Whittaker, S.B.* ; Coskun, Ü. ; Overduin, M.*

Structural basis of dynamic membrane recognition by trans-Golgi network specific FAPP proteins.

J. Mol. Biol. 427, 966-981 (2015)
DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
Glycosphingolipid metabolism relies on selective recruitment of the pleckstrin homology (PH) domains of FAPP proteins to the trans-Golgi network. The mechanism involved is unclear but requires recognition of phosphatidylinositol-4-phosphate (PI4P) within the Golgi membrane. We investigated the molecular basis of FAPP1-PH domain interactions with PI4P bilayers in liposome sedimentation and membrane partitioning assays. Our data reveals a mechanism in which FAPP-PH proteins preferentially target PI4P-containing liquid disordered membranes, while liquid ordered membranes were disfavored. Additionally, NMR spectroscopy was used to identify the binding determinants responsible for recognizing trans-Golgi network-like bicelles including phosphoinositide and neighboring lipid molecules. Membrane penetration by the FAPP1-PH domain was mediated by an exposed, conserved hydrophobic wedge next to the PI4P recognition site and ringed by a network of complementary polar residues and basic charges. Our data illuminates how insertion of a structured loop provides selectivity for sensing membrane fluidity and targeting to defined membrane zones and organelles. The determinants of this membrane sensing process are conserved across the CERT, OSBP and FAPP family. Hence, lipid gradients not only result in differential membrane ordering along the secretory pathway but also specifically localize diverse proteins through recognition of ensembles of lipid ligands in dynamic and deformable bilayers in order to promote anterograde trafficking.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.333
1.106
26
27
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Lipid Microdomains ; Membrane Trafficking ; Nuclear Magnetic Resonance Spectroscopy ; Phosphoinositide Recognition ; Pleckstrin Homology Domain; Oxysterol-binding-protein; Pleckstrin Homology Domains; Magnetic-resonance Relaxation; Model-free Approach; Phosphatidylinositol 4-phosphate; Glycosphingolipid Synthesis; Dependent Activation; Backbone Dynamics; Plasma-membrane; Lipid Rafts
Language english
Publication Year 2015
HGF-reported in Year 2015
ISSN (print) / ISBN 0022-2836
e-ISSN 1089-8638
Quellenangaben Volume: 427, Issue: 4, Pages: 966-981 Article Number: , Supplement: ,
Publisher Elsevier
Publishing Place London
Reviewing status Peer reviewed
Institute(s) Institute of Pancreatic Islet Research (IPI)
POF-Topic(s) 90000 - German Center for Diabetes Research
Research field(s) Helmholtz Diabetes Center
PSP Element(s) G-502600-002
PubMed ID 25579996
Erfassungsdatum 2015-02-26