PuSH - Publication Server of Helmholtz Zentrum München

Chavakis, T.* ; Cines, D.B.* ; Rhee, J.S.* ; Liang, O.D.* ; Schubert, U.* ; Hammes, H.P.* ; Higazi, A.A.* ; Nawroth, P.P.* ; Preissner, K.T.* ; Bdeir, K.*

Regulation of neovascularization by human neutrophil peptides (alpha-defensins): A link between inflammation and angiogenesis.

FASEB J. 18, 1306-1308 (2004)
DOI PMC
Angiogenesis, the growth of new blood vessels, is a complex biological process that is orchestrated by several growth factors and components of the extracellular matrix, including fibronectin (FN) and its receptor the integrin alpha5beta1. Angiogenesis is a critical part of inflammation and wound repair, but the mechanism by which vascular proliferation and migration is regulated by inflammatory cells is not completely understood. We have previously shown that human neutrophil peptides (HNPs), also known as alpha-defensins, which are secreted in high concentrations when neutrophils are activated, bind specifically to FN in the extracellular matrix and inhibit plasminogen activation. Therefore, we asked whether HNPs act as a link between inflammation and angiogenesis. Alpha5beta1-mediated endothelial cell adhesion and migration to FN, both under control conditions and under stimulation by vascular endothelial growth factor (VEGF), were inhibited specifically and in a dose-dependent manner by HNPs, whereas endothelial cell adhesion and migration to other components of the extracellular matrix, such as vitronectin, collagen, or fibrinogen/fibrin were not. Consistent with this finding, HNPs bound to and promoted the binding of fibronectin to alpha5beta1 integrin in arginine-glycine-aspartic acid (RGD)-independent manner. HNPs also completely inhibited VEGF-induced proliferation and induced apoptosis of endothelial cells in a dose-dependent manner. Moreover, HNPs inhibited capillary tube formation in three-dimensional fibrin-matrices as well as neovascularization in vivo in the chicken chorioallantoic membrane assay. Taken together, these data indicate that HNPs can regulate angiogenesis by affecting endothelial cell adhesion and migration in an FN-dependent manner as well as endothelial cell proliferation. These findings provide new insight into the role of inflammatory cells in angiogenesis and might provide a platform for developing a novel class of anti-angiogenesis drugs.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2004
HGF-reported in Year 0
ISSN (print) / ISBN 0892-6638
e-ISSN 1530-6860
Journal FASEB Journal
Quellenangaben Volume: 18, Issue: 11, Pages: 1306-1308 Article Number: , Supplement: ,
Publisher Wiley
Publishing Place Bethesda, Md.
Reviewing status Peer reviewed
Institute(s) Institute of Pancreatic Islet Research (IPI)
PubMed ID 15208269
Erfassungsdatum 2004-12-31