Optoacoustic monitoring of real-time lesion formation during radiofrequency catheter ablation.
    
    
        
    
    
        
        Proc. SPIE 9323:932308 (2015)
    
    
    
      
      
	
	    Current radiofrequency cardiac ablation procedures lack real-time lesion monitoring guidance, limiting the reliability and efficacy of the treatment. The objective of this work is to demonstrate that optoacoustic imaging can be applied to develop a diagnostic technique applicable to radiofrequency ablation for cardiac arrhythmia treatment with the capabilities of real-time monitoring of ablated lesion size and geometry. We demonstrate an optoacoustic imaging method using a 256-detector optoacoustic imaging probe and pulsed-laser illumination in the infrared wavelength range that is applied during radiofrequency ablation in excised porcine myocardial tissue samples. This technique results in images with high contrast between the lesion volume and unablated tissue, and is also capable of capturing time-resolved image sequences that provide information on the lesion development process. The size and geometry of the imaged lesion were shown to be in excellent agreement with the histological examinations. This study demonstrates the first deep-lesion real-time monitoring for radiofrequency ablation generated lesions, and the technique presented here has the potential for providing critical feedback that can significantly impact the outcome of clinical radiofrequency ablation procedures. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Cardiac Ablation ; Lesion Monitoring ; Optoacoustic ; Photoacoustic ; Radiofrequency ; Real-time ; Three-dimensional ; Tomography
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2015
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2015
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        Photons Plus Ultrasound: Imaging and Sensing 2015
    
 
	
        Conference Date
        7-12 February 2015
    
     
	
        Conference Location
        San Francisco, USA
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 9323,  
	    Issue: ,  
	    Pages: ,  
	    Article Number: 932308 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            SPIE
        
 
        
            Publishing Place
            
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Research field(s)
        Enabling and Novel Technologies
    
 
    
        PSP Element(s)
        G-505590-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2015-05-08