PuSH - Publication Server of Helmholtz Zentrum München

Knocking down of isoprene emission modifies the lipid matrix of thylakoid membranes and influences the chloroplast ultrastructure in poplar.

Plant Physiol. 168, 859-870 (2015)
Publ. Version/Full Text Postprint DOI PMC
Open Access Green
Isoprene is a small lipophilic molecule with important functions in plant protection against abiotic stresses by improving membrane structure and scavenging reactive oxygen species. Here, we studied the lipid composition of thylakoid membranes and chloroplast ultrastructure in isoprene emitting (IE) and non-isoprene emitting (NE) poplars. We demonstrated that the total amount of mono- (MGDG), di-galactosyldiacylglycerols (DGDG), phospholipids (PL), and fatty acids is reduced in chloroplasts when isoprene biosynthesis is blocked. A significantly lower amount of unsaturated fatty acids, particularly linolenic acid (18:3) in NE chloroplasts was associated with the reduced fluidity of thylakoid membranes, which in turn negatively affects PSII photochemical efficiency (ΦPSII). The low ΦPSII in NE plants was negatively correlated with non-photochemical quenching (NPQ) and the energy-dependent (qE) component of NPQ. Transmission electron microscopy (TEM) revealed alterations in the chloroplast ultrastructure in NE compared with IE plants. NE chloroplasts were more rounded and contained less grana stacks and longer stroma thylakoids, more plastoglobules, and larger associative zones between chloroplasts and mitochondria. These results strongly support the idea that in isoprene-emitting species, the function of this molecule is closely associated with the structural organization and functioning of plastidic membranes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
6.841
2.053
26
31
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Photosynthetic Electron-transport; Photosystem-ii Antenna; Chlorophyll Fluorescence; Digalactosyl-diacylglycerol; Lipoprotein Particles; Arabidopsis-thaliana; Phosphatidic-acid; Mass-spectrometry; Emitting Poplars; Higher-plants
Language english
Publication Year 2015
HGF-reported in Year 2015
ISSN (print) / ISBN 0032-0889
e-ISSN 1532-2548
Quellenangaben Volume: 168, Issue: 3, Pages: 859-870 Article Number: , Supplement: ,
Publisher American Society of Plant Biologists (ASPB)
Publishing Place Rockville
Reviewing status Peer reviewed
POF-Topic(s) 30202 - Environmental Health
20402 - Sustainable Plant Production
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
30205 - Bioengineering and Digital Health
Research field(s) Environmental Sciences
Enabling and Novel Technologies
PSP Element(s) G-504991-001
G-504800-001
G-504900-003
G-500300-001
G-500390-001
PubMed ID 25975835
Scopus ID 84936085623
Erfassungsdatum 2015-05-17