Structural and functional analysis of the signal transducing linker in the pH-responsive one component system CadC of Escherichia coli.
J. Mol. Biol. 427, 2548-2561 (2015)
The pH-responsive one component signaling system CadC in Escherichia coli belongs to the family of ToxR-like proteins, whose members share a conserved modular structure, with an N-terminal cytoplasmic winged helix-turn-helix DNA-binding domain being followed by a single transmembrane helix and a C-terminal periplasmic pH-sensing domain. In E. coli CadC a cytoplasmic linker comprising approximately 50 amino acids is essential for transmission of the signal from the sensor to the DNA-binding domain. However, the mechanism of transduction is poorly understood. Using NMR spectroscopy, we demonstrate here that the linker region is intrinsically disordered in solution. Furthermore, mutational analyses showed that it tolerates a range of amino acid substitutions (altering polarity, rigidity, α-helix-forming propensity), is robust to extension, but is sensitive to truncation. Indeed, truncations either reversed the expression profile of the target operon cadBA or decoupled expression from external pH altogether. CadC dimerizes via its periplasmic domain, but light scattering analysis provided no evidence for dimerization of the isolated DNA-binding domain, with or without the linker region. However, bacterial two-hybrid analysis revealed that CadC forms stable dimers in a stimulus- and linker-dependent manner, interacting only at pH<6.8. Strikingly, a variant with reversed cadBA expression profile, which lacks most of the linker, dimerizes preferentially at higher pH. Thus, we propose that the disordered CadC linker is required for transducing the pH-dependent response of the periplasmic sensor into a structural rearrangement which facilitates dimerization of the cytoplasmic CadC DNA-binding domain.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Toxr ; Acid Stress ; Regulation ; Sensor ; Transcription Activator; Chemical-shifts; Pseudoalteromonas-tunicata; Lysine Decarboxylase; Vibrio-cholerae; Acid Induction; Proteins; Operon; Expression; Regulator; Sequence
Keywords plus
Language
english
Publication Year
2015
Prepublished in Year
HGF-reported in Year
2015
ISSN (print) / ISBN
0022-2836
e-ISSN
1089-8638
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 427,
Issue: 15,
Pages: 2548-2561
Article Number: ,
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
London
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30203 - Molecular Targets and Therapies
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-503000-001
Grants
Copyright
Erfassungsdatum
2015-05-22